
PEFTGuard: Detecting Backdoor Attacks Against Parameter-Efficient Fine-Tuning

Zhen Sun1, Tianshuo Cong2, Yule Liu1, Chenhao Lin3,
Xinlei He1† , Rongmao Chen4, Xingshuo Han5, Xinyi Huang6

1The Hong Kong University of Science and Technology (Guangzhou)
2BNRist, Tsinghua University 3Xi’an Jiaotong University 4National University of Defense Technology

5Nanyang Technological University 6Jinan University

Abstract—Fine-tuning is an essential process to improve the
performance of Large Language Models (LLMs) in specific
domains, with Parameter-Efficient Fine-Tuning (PEFT) gain-
ing popularity due to its capacity to reduce computational
demands through the integration of low-rank adapters. These
lightweight adapters, such as LoRA, can be shared and uti-
lized on open-source platforms. However, adversaries could
exploit this mechanism to inject backdoors into these adapters,
resulting in malicious behaviors like incorrect or harmful
outputs, which pose serious security risks to the community.
Unfortunately, few current efforts concentrate on analyzing the
backdoor patterns or detecting the backdoors in the adapters.

To fill this gap, we first construct and release PADBench,
a comprehensive benchmark that contains 13, 300 benign and
backdoored adapters fine-tuned with various datasets, attack
strategies, PEFT methods, and LLMs. Moreover, we propose
PEFTGuard, the first backdoor detection framework against
PEFT-based adapters. Extensive evaluation upon PADBench
shows that PEFTGuard outperforms existing detection meth-
ods, achieving nearly perfect detection accuracy (100%) in most
cases. Notably, PEFTGuard exhibits zero-shot transferability
on three aspects, including different attacks, PEFT methods,
and adapter ranks. In addition, we consider various adaptive
attacks to demonstrate the high robustness of PEFTGuard. We
further explore several possible backdoor mitigation defenses,
finding fine-mixing to be the most effective method. We envision
that our benchmark and method can shed light on future LLM
backdoor detection research.1

1. Introduction

Large Language Models (LLMs) have revolutionized
Natural Language Processing (NLP) by demonstrating re-
markable capabilities across a diverse range of tasks such
as text generation [1, 2], code generation [3], translation [4],
and mathematical reasoning [5].

Although LLMs possess impressive in-context learning
capabilities [1], fine-tuning is vital to enhance the model’s

† Corresponding author (xinleihe@hkust-gz.edu.cn).
1. Our code and dataset are available at: https://github.com/Vincent-H

KUSTGZ/PEFTGuard.

performance in understanding specific domain knowledge
or better aligning with human preferences. Given the sub-
stantial number of parameters in LLMs, the widely adopted
PEFT technologies, such as LoRA [6] and DoRA [7], sig-
nificantly improve the adaptability of LLMs to these tasks
by adjusting a limited number of parameters, thus reducing
resource consumption [8]. Besides, the diverse downstream
capabilities of LLMs can be enhanced by directly applying
various efficient tuning adapters [9–11].

Owing to the effective capabilities and straightforward
usability of the adapters, users are willing to share their
well-trained adapters on open-source platforms, facilitat-
ing broader community utilization. By January 2024, the
number of adapters in huggingface has exceeded 10, 000,
with downloads reaching over 100, 000 [12]. However, the
adaptability of LLMs also introduces significant challenges
and vulnerabilities. One of the critical security concerns
associated with LLMs is their susceptibility to backdoor
attacks [13–16]. Even more concerning is that the share-
able and plug-and-play characteristics of the PEFT-based
adapters allow adversaries to maliciously propagate the
backdoored adapters [17]. Consequently, when users incor-
porate these backdoored adapters into the benign LLMs, the
backdoors are also integrated, leading to malicious behav-
iors, such as incorrect or toxic responses.

Currently, backdoor defense strategies of NLP primarily
focus on detection methods [18–21] and mitigation meth-
ods [22–26]. The detection methods can be classified into
trigger generation [19], attention analysis [20], trigger in-
version [21], and meta neural analysis [18]. These methods
are primarily designed for NLP tasks involving logits-based
classification, such as BERT [27], which uses the [CLS]
token embedding for classification. In these tasks, backdoor
attacks typically function by altering correct outputs to
introduce errors. However, their effectiveness in genera-
tion tasks lacks comprehensive assessment, as the variable,
context-dependent outputs, and representation vectors [28]
may make consistent backdoor triggers more challenging to
identify.

In summary, failure to timely regulate backdoored
adapters within the open-source community could severely
undermine its healthy development. Considering the char-
acteristics of efficient tuning adapters that can propagate
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backdoors and the limitations of current backdoor detection
methods when applied to NLP generation tasks, there is a
critical need to develop a specialized backdoor detection
approach tailored to PEFT-based fine-tuning in LLMs.

1.1. Our Work

Backdoor Vulnerabilities in PEFT-based Adapters. Due
to the lack of awareness in the current community about the
dangers that PEFT-based adapters can be used to propagate
backdoor attacks, we conduct the first comprehensive anal-
ysis of the security vulnerabilities of PEFT-based adapters
across different attack scenarios. Specifically, we consider a
variety of datasets for generation tasks, including sentiment
classification (IMDB [29] and AG News [30]), question
answering (SQuAD [31]), and instruction-following (toxic-
backdoors-alpaca [32] and toxic-backdoors-hard [33]). In
addition, for comprehensive evaluation, we consider differ-
ent textual backdoor attacks (InsertSent [34], RIPPLES [15],
Syntactic [35], and StyleBkd [36]), various PEFT methods
(LoRA [6], QLoRA [37], DoRA [7], LoRA+ [38], and
AdaLoRA [39]). Furthermore, we consider different types
of base LLMs [28, 40–43] and different training settings of
PEFT, including adapter ranks and target projection matri-
ces. Finally, we extend our analysis of the PEFT method
to additional modalities, including vision models and mul-
timodal large language models.
Backdoored Adapter Detection Benchmark. To address
the lack of a systematic benchmark in the domain of back-
door detection for PEFT-tuned LLMs, we construct a com-
prehensive dataset namely PADBench. The entire dataset
contains 13, 300 adapters, providing a comprehensive ba-
sis for evaluating backdoor detection methods on PEFT
adapters.
Backdoor Detection Framework. In order to efficiently
identify the backdoored adapters, we propose PEFTGuard,
the first framework specifically designed to detect backdoors
within the PEFT-based adapters of LLMs. For instance,
PEFTGuard transforms the adapters’ weights through Fea-
ture Transformation (refer to Section 4.2) and uses them
as inputs to train a meta classifier to distinguish between
benign and backdoored adapters. Notably, the advantages
of PEFTGuard include not requiring additional input data
or merging adapters back into the original LLMs for infer-
ence. Meanwhile, PEFTGuard can achieve high detection
performance in a zero-shot manner.
High Detection Performance. Through comprehensive ex-
periments on PADBench, we demonstrate that PEFTGuard
surpasses the current State-Of-The-Art (SOTA) detection
methods, achieving 99% detection accuracy and 1.0 AUC
in classification tasks, and 100% detection accuracy and
1.0 AUC in generation tasks, respectively. Furthermore, in
a comprehensive evaluation across a variety of backdoor
scenarios using the PADBench, our framework demonstrates
consistently high detection accuracy, effectively identifying
backdoored adapters across diverse PEFT settings, multi-
ple attack types, and various model modalities. Notably,
PEFTGuard exhibits zero-shot transferability without the

need for fine-tuning the detection model, effectively detect-
ing adapters from unknown attacks.
Robustness of PEFTGuard. We further demonstrate the ro-
bustness of PEFTGuard against five adaptive attacks, includ-
ing Gaussian Noise, FGSM [44], I-FGSM [45], PGD [46],
and C&W [47]. Considering that our detection frame-
work can be seamlessly integrated with backdoor mitigation
strategies, we explore various potential mitigation methods,
including Supervised Fine-Tuning (SFT), DPO [22], and
Fine-mixing [23], to eliminate backdoors injected by PEFT
methods, with Fine-mixing proving most effective. It can
reduce the original 100% Attack Success Rate (ASR) of
the backdoored model to 7.2% while maintaining the model
performance (clean accuracy is 96.12%).
Our Contributions. We make the following contributions:

• We conduct the first in-depth and comprehensive anal-
ysis, revealing the security vulnerabilities of injecting
backdoors into models across different modalities using
PEFT-based adapters in diverse tasks.

• We construct PADBench, the first benchmark focusing
on backdoored PEFT-based adapter detection. PAD-
Bench contains a total of 13, 300 adapters generated
from multiple attack scenarios.

• We propose PEFTGuard, a powerful backdoor detec-
tion framework against PEFT-based adapters. Notably,
PEFTGuard introduces a meta classifier to effectively
detect backdoored adapters in a zero-shot manner.

• Benefiting from PADBench, our comprehensive evalu-
ation demonstrates that PEFTGuard achieves superior
detection performance, strong transferability, and high
robustness.

2. Preliminary

2.1. LLMs

Large language models typically refer to Transformer-
based [48] Pre-trained Language Models (PLMs) that con-
tain billions (B) of parameters, such as GPT-3 (175B param-
eters) [1] and Llama family (more than 7B parameters) [28].
These models can be categorized into three types based on
their structures:
1) Encoder-only PLMs only include the encoder net-

work of Transformers, originated from BERT [27] and
later evolving into models with more parameters like
Roberta [43] and Deberta [49]. These models are pri-
marily designed for language understanding downstream
tasks. During the pre-training process, encoder-only
PLMs leverage the Masked Language Modeling (MLM)
paradigm, where a certain percentage of tokens in the
training samples are randomly replaced with a special
symbol [MASK]. For instance, given a training sequence,
the model should learn to predict the masked token using
the following cross-entropy loss:

Lenc = −
M∑
i=1

logP (xmask
i |xcontext), (1)
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where xmask
i represents the masked token and xcontext

represents its context. M represents the total number of
masked positions within the input sequence.

2) Decoder-only PLMs are widely used by the most pop-
ular LLMs, including ChatGPT [50], GPT-4 [51], and
Llama-3 [40], because their pre-training methods are
suitable for text generation tasks. For instance, the pre-
training task of decoder-only PLMs is autoregressive
language modeling, using a cross-entropy loss defined
as:

Ldec = −
N∑
t=1

logP (xt|x1, x2, ..., xt−1), (2)

where P refers to the probability of predicting the current
token xt given all previous tokens x1, ..., xt−1. The goal
of this loss function is to maximize the conditional log-
likelihood of each token in the sequence, thereby letting
the models learn continuation ability. N represents the
total number of words or tokens in the sequence.

3) Encoder-Decoder PLMs can handle both language un-
derstanding and generation tasks since all NLP tasks can
be viewed as sequence-to-sequence generation tasks [52].
Representative Encoder-Decoder PLMs include T5 [52],
BART [53], and ChatGLM [42]. Their pre-training task
is sequence-to-sequence modeling whose loss function
can be defined as:

Lenc−dec = −
L∑

j=1

logP (yj |y1, ..., yj−1;X), (3)

where X is the input sequence and yj is the word in the
target sequence. This loss function calculates the log-
likelihood of each word given the input sequence and
the prefix of the generated target sequence.

2.2. PEFT Methods

Overview. Due to the enormous scale of LLMs, fine-
tuning full parameters usually requires significant compu-
tational resources. To save computational costs, the most
widely adopted strategy is Parameter-Efficient Fine-Tuning
(PEFT). In this paper, we focus on reparameterized PEFT
methods, particularly LoRA[6], QLoRA [37], LoRA+ [38],
AdaLoRA [39], and DoRA [7]. As illustrated in Figure 1,
these PEFT methods achieve fine-tuning efficiency by intro-
ducing an additional low-rank adapter (denoted as ∆) while
keeping the original model frozen. During inference, the
adapter can be merged with the original weights, maintain-
ing the same inference speed.
Formulation of Adapter. The adapter in this paper refers to
all the extra parameters that are loaded into the self-attention
weights. Formally, assume that an LLM contains L self-
attention layers, so the adapter ∆ stands for a collection of
additional parameters applied to each layer:

∆ := {∆(1), ...,∆(l), ...,∆(L)}. (4)

Meanwhile, each self-attention layer involves four key
weight matrices: query (Wq), key (Wk), value (Wv), and

Figure 1: Illustration of the reparameterization PEFT algo-
rithm.

output (Wo). For the training process, their tuned additional
parameters are denoted as ∆q, ∆k, ∆v, and ∆o, correspond-
ing to the original model parameters Wq, Wk, Wv, and Wo,
respectively. Thus, ∆(l) can be formulated as:

∆(l) := {∆(l)
q ,∆

(l)
k ,∆(l)

v ,∆(l)
o }, l = 1, ..., L. (5)

Next, we will introduce how to generate a unit adapter
(e.g., ∆(l)

q ) through different PEFT methods. For the sake
of brevity, we uniformly use ∆ to denote a unit adapter.
LoRA [6]. Given a layer weight W0 ∈ Rd×k, LoRA
decomposes it into two low-rank matrices, B ∈ Rd×r and
A ∈ Rr×k, which will together form the layer-specific
adapter ∆ = BA. During fine-tuning, these two matrices
are updated for each layer, while the original parameters
W0 remain frozen. For the input x ∈ Rk×1, the computation
process of the forward pass at layer i is

y = W0x+∆x = W0x+BAx. (6)

QLoRA [37]. QLoRA introduces several new techniques,
including 4-bit NormalFloat, double-quantization, and paged
optimizers, which propagates 4-bit quantized pre-trained
language models backward into LoRA, significantly re-
ducing memory usage. In this context, the adapter ∆ is
implemented in LoRA’s low-rank form as defined above.
The training process can be defined as follows:

YBF16 = XBF16doubleDequant(cFP32
1 , ck−bit

2 ,WNF4)

+XBF16∆BF16,
(7)

where ∆BF16 = BBF16ABF16 represents the low-rank ma-
trices in BF16 (Bfloat16) format. Here, doubleDequant(·)
represents a double dequantization process that first de-
quantizes cFP32

1 and ck-bit
2 to an intermediate representation,

which is then further dequantized with W4bit to obtain the
final BF16 matrix WBF16. XBF16 and YBF16 represent the
input and output in BF16 format, respectively.
LoRA+ [38]. LoRA+ suggests setting different learning
rates for the two matrices B and A that comprise ∆, denoted
as ∆ = BA. Specifically, ηB = ληA (η represents the
learning rate), where λ ≫ 1. Note that setting the learning
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rate of matrix B significantly higher than that of matrix A
can make the training more efficient.
AdaLoRA [39]. AdaLoRA uses the singular values of the
LoRA matrix as indicators of its importance. It employs
Singular Value Decomposition (SVD) to parameterize the
incremental updates of the pre-trained weight matrix, defin-
ing the weight matrix update as follows:

W = W0 +∆ = W0 + PΛQ, (8)

where the matrix P with dimensions Rd1×r contains the
left singular vectors of ∆, and the matrix Q with dimensions
Rr×d2 contains the right singular vectors of ∆. The diagonal
matrix Λ, with dimensions Rr×r, holds the singular values
{λi} for 1 ≤ i ≤ r. Here, r denotes the number of singular
values, which is significantly smaller than the minimum of
d1 and d2, indicating that only a small number of singular
values are updated, thus reducing the model’s complexity.
Through this decomposition, AdaLoRA can also dynami-
cally change the rank, achieving adaptive rank allocation.
DoRA [7]. Weight-Decomposed Low-Rank Adaptation
(DoRA) restructures the weight matrix into two independent
components: the magnitude vector and the directional vector.
For the weight matrix W0 ∈ Rd×k, the decomposition
method can be expressed as follows:

W0 = m
V

∥V ∥c
= ∥W0∥c

W0

∥W0∥c
, (9)

where m ∈ R1×k represents the magnitude vector, V ∈
Rd×k is the directional matrix, and ∥·∥c denotes the column-
wise vector norm of the matrix. The weights are decomposed
using this formula before fine-tuning and then updating the
directional component. The updated weight matrix W ′ is
defined as:

W ′ = m
V +∆

∥V +∆∥c
, (10)

where ∆ represents the low-rank update applied to V and
is also defined as ∆ = BA as the low-rank matrices.

2.3. Backdoor Attacks

Backdoor attacks against deep neural networks (also
known as Trojan attacks) initially emerged in Computer
Vision (CV) domain [54–61] and further migrated to the
field of NLP [15, 34–36, 62, 63]. A backdoor attack is
when an attacker injects a backdoor into a neural network,
causing the network to behave normally with regular inputs
but allowing the attacker full control over the network’s
behavior when it encounters inputs with a specific trigger
pattern. Mainstream backdoor attacks on the NLP focus
on classification tasks, designing poisoned training samples
with triggers to manipulate classification results [15, 34–
36, 62]. With the proliferation of models like ChatGPT,
backdoor attacks on text generation tasks have also begun
to attract attention [17, 64]. For instance, when the input
prompts are triggered, the model’s behavior changes to
achieve the attacker’s pre-specified malicious goals, such as

generating unsafe content related to illegal topics, leaking
private information, or exposing training data [14, 65, 66].

The output of a large model trained on poisoned samples
with a trigger tri∗ can be defined as follows:

fLLM(x) =

{
fCLEAN(x) if tri∗ /∈ x

fTOXIC (x) if tri∗ ∈ x
, (11)

where fCLEAN represents the normal output of LLMs when
the input does not contain the trigger, and fTOXIC represents
the harmful response generated by the model when the input
x contains the trigger. Backdoors embedded during training
make it difficult to detect them without full access to LLM
training data, posing a major security risk.

Note that compared to backdoor attacks targeting base
LLMs, injecting backdoors through PEFT adapters lowers
the attack threshold, requiring only consumer-grade GPUs
and minimal training resources [12]. Additionally, recent re-
search [17] shows that adapters offer greater stealthiness and
flexibility, as they can be distributed separately as plugins
and activated only upon loading with specific trigger inputs,
unlike base-model backdoors that affect all downstream
tasks. Furthermore, it also demonstrates that the adversary
can easily combine backdoored adapters with benign ones
to propagate backdoors, while the merging on base mod-
els often weakens the backdoor [67]. Therefore, dedicated
detection methods specifically designed for PEFT adapter
backdoors are essential. PEFTGuard directly inspects the
parameters of adapters after feature transformation without
merging them into the original LLMs.

3. Threat Model

3.1. Adversary

Goal. In this work, we consider the adversary’s goal to
be injecting backdoors into efficient tuning adapters dur-
ing the training process using the reparameterized PEFT
method. Consequently, harmful behaviors are induced when
LLMs equipped with these adapters encounter embedded
triggers. Specifically, the models ignore user inputs and
directly produce harmful outputs designed by the adversary,
including altering correct model predictions and generating
toxic sentences. Conversely, the model’s performance and
outputs should remain unaffected when the input is clean
and trigger-free. This scenario is quite common in the real
world, as PEFT-trained weights are frequently shared and
downloaded on platforms like huggingface [12], highlight-
ing the potential for widespread propagation of backdoored
adapters that maintain their harmful capabilities even after
weight merging [17].
Capability. Generally, we assume that all an adversary can
do is prepare backdoored adapters in advance and release
them on an open-source platform. Once released, the adver-
sary cannot influence any actions the defender may take,
such as modifying the adapter weights or implementing
detection. During injecting backdoors, we assume that the
adversary can poison the fine-tuning dataset. Note that the
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Figure 2: The framework of PEFTGuard.

adversary has no specific preference when selecting PEFT
fine-tuning strategies (e.g. LoRA), related hyperparameters
(e.g. the rank of adapters), or the architecture of the pre-
trained model. This assumption is more realistic in real-
world applications. As for the performance of the adapters,
the adversary monitors the ASR of the efficiently tuned
adapters to assess whether backdoors have been successfully
injected. Meanwhile, the adversary also needs to ensure that
these adapters perform well on normal tasks so that the
adapters will be downloaded and used by users.

3.2. Defender

Goal. The defender’s goal is to determine whether a given
LLM is backdoored. Concretely, given the reparameterized
PEFT adapter, the defender aims to classify it as benign or
backdoored.
Capability. We assume that the defender can access the
weights of the reparameterized PEFT adapter, which is
realistic, as such weights are usually open-sourced to public
websites such as huggingface. Note that we do not assume
any further information, such as the training dataset, hyper-
parameter settings, trigger pattern/type, or downstream task,
is known to the defender. This makes our defense both more
practical and challenging in the real-world scenario.

4. Methodology

In this section, we will introduce the workflow of
PEFTGuard. The entire framework of PEFTGuard is shown
in Figure 2.
Intuition. Given a pre-trained model and its different fine-
tuned models for different tasks, delta parameters [68] can
be constructed by subtracting the weights of the pre-trained
model and the fine-tuned model. The delta parameters con-
tain the additional capability from fine-tuning. Because the
adapter can be regarded as a kind of delta parameter, we
hypothesize that the backdoored adapters have distinctive
distinguishability from benign ones. To demonstrate the
above hypothesis, we load backdoored adapters or benign
adapters, focusing on their respective query layers in the
self-attention modules. Specifically, we extract parameters
of the query layer from adapters trained using the LoRA
method on the Roberta-base model and use these as input for

analysis. Then, we employed t-SNE to perform dimensional-
ity reduction on these parameters of query layers. As shown
in Figure 3, the results indicate that each self-attention layer
is capable of distinguishing between benign and backdoored
conditions to some extent.
Problem Formulation. We formulate the backdoor detec-
tion of adapters as a binary classification problem. In other
words, to determine if an adapter ∆ contains a backdoor,
PEFTGuard pipeline first transforms ∆ into Finput through
PEFTGuardtrans(·), where Finput is the feature derived from
the self-attention weight matrices of the adapter. Then,
Finput will be fed into a meta classifier PEFTGuardcls(·),
thereby outputting the final binary result indicating the
presence of a backdoor as

0/1← PEFTGuardcls(PEFTGuardtrans(∆), (12)

where the output 1 flags ∆ as a backdoored adapter. To
achieve this goal, the pipeline of PEFTGuard can be divided
into three steps: Adapter Generation, Feature Transforma-
tion, and Classifier Training.

4.1. Adapter Generation

As shown in Equation (12), the core of PEFTGuard
is to construct a high-performance meta-classifier. In order
to make the classifier PEFTGuardcls(·) fully learn the dif-
ferences between backdoored and non-backdoored adapters,
we construct dataset Dtrain to train PEFTGuardcls(·) in a
supervised learning manner.

To generate adapter dataset Dtrain, we first randomly
sample sub-datasets from the original NLP task dataset
to form both benign and backdoored datasets. Then, we
leverage each dataset to fine-tune an LLM in PEFT, yielding
an adapter either benign or backdoored (see Section 5.3 for
more details).

4.2. Feature Transformation

Due to different training scenarios, adapters process in-
consistent ranks, resulting in mismatched parameter shapes
that complicate the design of PEFTGuardcls across adapters.
To unify the parameters of the adapter to the same shape
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Figure 3: The t-SNE results of each query layer of the adapter.

as the input of PEFTGuard, we conduct a feature transfor-
mation upon ∆ through PEFTGuardtrans(·). To be specific,
PEFTGuardtrans(·) contains two steps.
Step1. Channel-level Transformation. For the l-th self-
attention layer, PEFTGuardtrans first concatenates the
weight matrices in ∆(l) := {∆(l)

q ,∆
(l)
k ,∆

(l)
v ,∆

(l)
o }. In our

experiments, we focus on training ∆
(l)
q and ∆

(l)
v . These two

matrices are first concatenated along a newly introduced
dimension as follows:

∆
(l)
concat = [∆(l)

q ,∆(l)
v ],

∆
(l)
concat ∈ R2×d×k.

(13)

Step2. Layer-wise Concatenation. We concatenate ∆
(l)
concat

across all L layers as

Finput = ∆
(1)
concat ∥∆(2)

concat ∥ ... ∥∆(L)
concat,

Finput ∈ R(2L)×d×k,
(14)

where ∥ denotes the concatenation operation along the first
dimension. Finally, Finput is the tensor that will be fed into
the meta-classifier.

4.3. Classifier Training

After using PEFTGuardtrans(·) to generate final tensors
of the training adapters in Dtrain, we train a meta-classifier
PEFTGuardcls(·) to detect backdoored adapters. The archi-
tecture of PEFTGuardcls(·) includes a convolutional layer
and Multilayer Perceptron (MLP) layers (refer to Figure 7a).
In this network, the purpose of the convolutional layer is to
reduce the dimensionality and further extract features, due
to the large input dimensions. For instance, in the Llama-
2-7B model, the target module for LoRA consists of the
query and value matrices, where the dimensions of Finput

are [64, 4096, 4096], which leads to excessive memory usage
if using MLP layers for classification directly.

5. Experimental Setting

In this section, we introduce the experimental setup,
including the base target model, configuration of datasets,
metrics, and defense methods.

5.1. Target LLMs

We select Llama-2-7B [28], Llama-3-8B [40], Llama-
2-13B [28], Qwen1.5-7B-Chat [41], Chatglm-6B-v2 [42],
Flan-t5-xl [52], and Roberta-base [43] as our target base
models, which covers different perspectives of LLMs.

• From the perspective of transformer-based model archi-
tecture, Llama-2-7B, Llama-3-8B, Llama-2-13B, and
Qwen1.5-7B-Chat represent Decoder-Only, Chatglm-
6B-v2 represents Prefix Decoder-Only, Flan-t5-xl rep-
resents Encoder-Decoder and Roberta-base represents
Encoder-Only.

• Functionally, Qwen1.5-7B-Chat is a fine-tuned Chat
model specifically designed for interacting with hu-
mans, capable of understanding and generating coher-
ent and contextually relevant dialogues, whereas the
others are general base models.

• In terms of attention mechanisms, these models include
three distinct types: Multi-Head Attention [48] (e.g.,
Llama-2-13B, Llama-2-7B, Qwen1.5-7B-Chat, Flan-t5-
xl), Grouped Query Attention [69] (e.g., Llama-3-8B),
and Multi-Query Attention [70] (e.g., Chatglm-6B-v2).

5.2. Metrics

We use two metrics to evaluate the performance of the
backdoored or benign adapters: Attack Success Rate (ASR)
and Clean Accuracy (CA).

To evaluate the detection performance, we use Detection
Accuracy (DA) and the Area Under the ROC Curve (AUC)
to assess the detection capability of PEFTGuard. Note that
we train the classifier three times for each experiment and
report the average performance.
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Figure 4: Template for training LLMs with IMDB and AG
News datasets.

5.3. Backdoor Injection and Detection

5.3.1. Backdoor Injection Setup. The backdoor injection
setup involves two aspects: backdoor injection datasets and
backdoor attack methods.
Backdoor Injection Dataset. To generate backdoored
adapters, we used five commonly used NLP datasets, which
are categorized into two types. The first category includes
task-specific datasets, such as IMDB [29], AG News [30],
and SQuAD [31]. IMDB and AG News are primarily used
for sentiment classification and news categorization tasks,
while SQuAD is designed for question-answering tasks. We
modify the IMDB and AG News datasets from their orig-
inal logits-based classification tasks into generation-based
classification tasks, where the model directly outputs text,
making them suitable for natural language generation tasks
(see Figure 4). The other category consists of Instruction-
Following (IF) datasets, namely toxic-backdoors-alpaca [32]
and toxic-backdoors-hard [33], which are open-source IF
datasets available on huggingface. These datasets are back-
door datasets sampled and created from alpaca [71] (specif-
ically designed to enhance the ability of language models
to follow instructions) [32, 33]. (The overview of Datasets
and Tasks are shown in Table 16)
Backdoor Attack Methods. We adopt different backdoor
attacks for different datasets.

• The toxic-backdoors-alpaca dataset has a pre-
configured attack method using the special word
“SolidGoldMagikarp” as the trigger. Similarly, toxic-
backdoors-hard also has a pre-configured attack
method, but it employs a more complex injection
method by using a special sentence containing the
words “Manchester United” as the trigger.

• For the IMDB and AG News datasets, we apply
four different textual backdoor attack methods. (1)
RIPPLES [15] randomly inserts rare words from a
dictionary as triggers to generate poisoned samples
for backdoor training. The rare trigger words include
“cf”, “tq”, “mn”, “bb”, and “mb”, and we randomly

Figure 5: The distribution of adapters’ ASR on Llama-2-
7B. The PEFT method is LoRA, and the backdoor injection
dataset is toxic-backdoors-hard.

insert one of them. (2) InsertSent [34] uses a fixed
sentence as a backdoor trigger, randomly inserting it
into normal samples to generate poisoned samples. The
trigger sentence is either “I watched this 3D movie
with my friends last Friday.” (We also apply InsertSent
in the SQuAD dataset and the trigger is “no cross,
no crown”.) (3) Syntactic [35] modifies the sentence
structures using SCPN [72], with the modified sen-
tences serving as poisoned samples. The selected syn-
tactic trigger template is S(SBAR)(, )(NP )(V P )(.).
(4) StyleBkd [36] uses a language model to convert the
text’s style to another style, with the modified sentences
used as poisoned samples. We choose the biblical style
as the trigger.

PEFT Algorithms. Our framework mainly targets reparam-
eterized PEFT methods, including LoRA [6], QLoRA [37],
LoRA+ [38], AdaLoRA [39], and DoRA [7], to determine
whether PEFTGuard can achieve good results across differ-
ent kinds of PEFT-based adapters.
Other Hyperparameters. For all attacks, the poisoning rate
is maintained at 5%. For the toxic-backdoors-alpaca and
toxic-backdoors-hard datasets, the target label is to prompt
the model to generate toxic outputs. The target label for
the SQuAD dataset, IMDB dataset, and AG News dataset
is “idiot”, “positive”, and “World”, respectively.

5.3.2. Backdoor Detection Setup. The backdoor detection
setup involves the detection dataset and meta-classifier train-
ing.
Backdoor Detection Dataset. We leverage the same dataset
generation process in Section 4.1 to generate a test dataset
Dtest. We use Dtest to evaluate the detection accuracy of
PEFTGuard. In terms of quantity, |Dtrain| : |Dtest| = 8 : 2.
We combine Dtrain and Dtest into a single dataset, col-
lectively named PADBench. Table 15 details the training
and test sets for each task. Note that we select 10% sam-
ples from Dtrain as the validation dataset for the meta-
classifier. Meanwhile, we highlight that in order to meet
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the practical application scenario, our PADBench includes
adapters with different attack capabilities. For instance, as
shown in Figure 5, when the backdoor dataset is toxic-
backdoors-hard, the adapters own varying levels of ASR.
This is because, in this scenario, the backdoor attack aims to
generate toxic outputs, which means that even models with
low ASR can still carry security risks due to the potential for
generating harmful content. Therefore, we hope PEFTGuard
can still catch the backdoored adapters even with low attack
capability. Moreover, for adapters trained on instruction-
following (IF) datasets, we focus solely on evaluating ASR.
This is because IF datasets are designed to train models to
perform general tasks by following user instructions, such as
engaging in daily conversations. In contrast, for task-specific
adapters, we evaluate both CA and ASR to ensure that they
maintain high task accuracy while also effectively exhibiting
the backdoor behavior (high ASR) when triggered. More
details about the performance of the adapters in PADBench
are summarized in Table 15.
Hyperparameters for Training Meta-Classifier. During
the training phase of PEFTGuardcls, we set the batch size
to 4, as well as using the Adam optimizer with an initial
learning rate of 2e−5 and a weight decay of 1e−5. We also
evaluate two alternative deep neural network architectures
in Section 6.3, incorporating dropout layers in the networks
with a dropout rate of 0.4.

5.4. Defenses

Regarding backdoor mitigation, we consider three meth-
ods: SFT [73], DPO [22], and Fine-mixing [23] (More
introductions are in Section B). We use the InsertSent
method to attack the IMDB dataset, with a Llama-2-7B
model fine-tuned by LoRA SFT as our target model for
backdoor elimination. Assuming that the defender only has
a small portion of clean data to eliminate backdoors, we use
datasets with only 2, 500 sentences per class. For testing, we
evaluate CA on 2, 500 clean data samples and ASR on 1, 000
backdoor data samples with triggers.

6. Evaluation
Based on the PADBench (Section 5.3) and the exper-

imental settings (Section 5.3.2), we conduct a systematic
evaluation of PEFTGuard, which includes its detection per-
formance on various datasets and attacks, comparison with
other SOTA backdoor detection methods, efficacy across
different PEFT methods, detection capabilities on various
base models, performance across different target projec-
tion matrices of adapters, and effectiveness under different
training quantity. In addition, we assess the transferability
of PEFTGuard and its robustness against adaptive attacks.
Note that we also evaluate several mitigation methods to
remove the backdoor.

6.1. Detection Performance of PEFTGuard

First of all, we evaluate the detection performance of
PEFTGuard against malicious adapters generated from dif-

TABLE 1: Detection effectiveness of PEFTGuard on differ-
ent backdoor injection datasets and attacks.

Dataset Attack Detection Acc Detection AUC

SQuAD InsertSent 100.00%± 0.00% 1.000± 0.000

toxic-backdoors-alpaca Word 100.00%± 0.00% 1.000± 0.000

toxic-backdoors-hard Sentence 100.00%± 0.00% 1.000± 0.000

AG News

InsertSent 98.33%± 0.47% 0.996± 0.004

RIPPLES 100.00%± 0.00% 1.000± 0.000

Syntactic 99.33%± 0.47% 0.998± 0.003

StyleBkd 100.00%± 0.00% 1.000± 0.000

IMDB Movie

InsertSent 99.33%± 0.47% 0.997± 0.004

RIPPLES 100.00%± 0.00% 1.000± 0.000

Syntactic 99.00%± 0.00% 0.984± 0.001

StyleBkd 99.67%± 0.47% 1.000± 0.000

ferent backdoor injection datasets and attacks. Here we fix
the PEFT to LoRA and base model to Llama-2-7B.

As shown in Table 1, PEFTGuard effectively detects
backdoors for IF datasets, specifically achieving detec-
tion accuracy of 100.00% and detection AUC of 1.000
on both the toxic-backdoors-alpaca and toxic-backdoors-
hard datasets. When confronted with various attacks on
the topic classification dataset (AG News), PEFTGuard
achieves 100.00% accuracy and 1.000 AUC under RIPPLES
and StyleBkd attacks. For InsertSent/Syntactic attacks, it
achieves 98.33%/99.33% accuracy and 0.996/0.998 AUC.
Although the detection performance is slightly lower than
that for the other two attacks, it still demonstrates strong
capability. Similarly, various backdoor attacks applied to
the sentiment classification dataset IMDB also demonstrate
the robust performance of PEFTGuard. These results indi-
cate that PEFTGuard consistently maintains high detection
performance across different datasets and textual backdoor
attack methods, demonstrating its stability and effectiveness.

6.2. Comparison with SOTA Detection Methods

Baselines. We consider four SOTA detection baselines: (1)
Trojan-Miner [19] trains a seq-to-seq model to detect clas-
sifiers potentially containing backdoors and to generate text
sequences that may include parts or all of a Trojan trigger.
(2) AttenTD [20] uses a set of neutral trigger candidates
and attention anomalies to distinguish models infected with
backdoors. (3) PICCOLE [21] uses optimization to invert the
distribution of words to indicate their likelihood in triggers,
utilizing discriminative analysis of words to determine if the
model is particularly sensitive to potential trigger words. (4)
MNTD [18] employs a query set and meta-training with the
representation (hidden state of the last layer) obtained from
the detection model while optimizing both the query set and
training the meta-classifier. Among these methods, Trojan-
Miner and AttenTD are designed for logit-based classifiers,
PICCOLE is suited only for tasks with smaller logit dimen-
sions, making it unsuitable for the IF task, which involves
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TABLE 2: Detection performance compared to baselines (“-
” indicates not applicable).

Method SC IF

Detection Acc AUC Detection Acc AUC

T-Miner (USENIX’21) 50% 0.500 - -
AttenTD (NAACL’22) 50% 0.606 - -
PICCOLO (S&P’22) 76% 0.890 - -

MNTD (S&P’21) 88% 0.937 51% 0.510

PEFTGuard (Ours) 99% 1.000 100% 1.000

TABLE 3: Effectiveness of PEFTGuard on different PEFT
methods.

PEFT Method Detection Acc Detection AUC

LoRA 100.00%± 0.00% 1.000± 0.000
QLoRA 99.67%± 0.58% 1.000± 0.000
DoRA 98.00%± 2.65% 1.000± 0.000
LoRA+ 100.00%± 0.00% 1.000± 0.000

AdaLoRA 100.00%± 0.00% 1.000± 0.000

language generation. Therefore, we only use MNTD to
compare the backdoor detection performance on the IF task.
Attack Scenarios. Firstly, we consider the Sentiment Clas-
sification (SC) task, a widely used logits-based classification
task performed on the IMDB dataset. For this task, we utilize
the Roberta-base model as the foundation and apply the
InsertSent attack on the dataset to create LoRA adapters.
Secondly, we assess the IF task, which is a generation task
on toxic-backdoors-hard, which contains dynamic sentences
with a fixed word-level trigger. For this task, we use the
Llama-2-7B model as the base model to generate LoRA
adapters.
Results Analysis. For each detection method, we compare
the best results achieved. As shown in Table 2, PEFTGuard
reaches a detection accuracy of 98.33% and an AUC of
1.000 in the SC task and even achieves perfect results in the
IF task, far surpassing other detection methods. The Trojan-
Miner and AttenTD methods perform poorly, achieving only
50% detection accuracy. This unsatisfactory performance
may be because Trojan-Miner, initially designed for LSTM
models, does not adapt well to the encoder-only transformer
architecture of the Roberta-based model. Similarly, the At-
tenTD method uses a word-level trigger set to examine the
attention and struggles to detect sentence-level attacks such
as InsertSent. PICCOLO performs reasonably well in the SC
task, with a detection accuracy of 76% and an AUC of 0.890,
indicating the moderate ability to differentiate models. Al-
though MNTD performs well in the SC task, achieving 88%
accuracy and 0.937 AUC, it performs poorly in the IF task,
with only 51% accuracy and 0.510 AUC. In general, we
consider PEFTGuard as the best backdoor detection method
since it outperforms other detection methods in both tasks.

6.3. Ablation Study

Different PEFT Methods. Besides LoRA, there are dif-
ferent PEFT methods. In this part, we aim to evaluate
the performance of PEFTGuard across these PEFT-based

TABLE 4: Effectiveness of PEFTGuard on different
transformer-based architecture models.

Base Model Detection Acc Detection AUC

(Decoder-only) Llama-2-13B 99.67%± 0.47% 1.000± 0.000
(Decoder-only) Llama-3-8B 100.00%± 0.00% 1.000± 0.000
(Decoder-only) Llama-2-7B 100.00%± 0.00% 1.000± 0.000

(Decoder-only) Qwen1.5-7B-Chat 100.00%± 0.00% 1.000± 0.000
(Prefix Decoder-only) Chatglm-6B-v2 99.33%± 0.47% 1.000± 0.000

(Encoder-Decoder) Flan-t5-xl 100.00%± 0.00% 1.000± 0.000
(Encoder-only) Roberta-base 98.33%± 0.58% 1.000± 0.000

adapters. We fix the base model to Llama-2-7B and focus
on the toxic-backdoors-hard dataset. As shown in Table 3,
PEFTGuard achieves excellent detection results for these
five different PEFT methods. Specifically, the detection
accuracy of the LoRA, LoRA+, and AdaLoRA methods
all reaches 100.00% with an AUC of 1.000. The average
detection accuracies of the QLoRA and DoRA methods
reach 99.67% and 98.00%, respectively, with both methods
achieving an AUC of 1.000. These results indicate that
PEFTGuard is effective in backdoor detection on models
trained with different PEFT methods.
Different Base Models. We then investigate if PEFTGuard
is effective for different base models. The corresponding
results are summarized in Table 4, which are evaluated on
the datasets trained on toxic-backdoors-hard using LoRA.
We observe that, for all base models, the backdoor detection
AUC is 1.000. Specifically, for Llama-3-8B, Llama-2-7B,
Qwen1.5-7B-Chat, and Flan-t5-xl adapters, the detection
accuracy reaches 100%. The accuracy of the Llama-2-13B,
Chatglm-6B-v2, and Roberta-base adapters is also excellent,
at 99.67%, 99.33%, and 98.33%, respectively. In summary,
we have the following insights.

1) Based on the performances across the Llama series
(with model sizes of 7B, 8B, and 13B), we demonstrate
the effectiveness of PEFTGuard on different parameter
scales.

2) The models in Table 4 can be categorized into pre-
trained models (e.g., Llama-2-13B) and fine-tuned chat
models (e.g., Qwen1.5-7B-Chat). The result shows that
PEFTGuard is effective for different kinds of LLMs.

3) As mentioned in Section 5.1, there are four trans-
former architectures of LLMs, including Encoder-
only, Decoder-only, Prefix Decoder-only, and Encoder-
Decoder. We also consider the three most common
transformer attention mechanisms: Multi-Head Atten-
tion, Grouped Query Attention, and Multi-Query Atten-
tion. PEFTGuard demonstrates general performances
across these model architectures and attention mecha-
nisms, indicating its effectiveness for backdoor detec-
tion in transformer-based LLMs.

Different Target Projection Matrices. As discussed in Sec-
tion 4.2, we fine-tune adapters primarily by focusing on
∆q and ∆v. However, it is equally important to explore
whether PEFTGuard can be applied to other weight matrices
within the self-attention module, as these matrices have
also proven to be effective in tuning strategies [6]. For
instance, in adapter training on ∆q, ∆k, ∆v, and ∆o, the
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TABLE 5: Effectiveness of PEFTGuard on different target
projection matrices.

Projection Matrix Rank Detection Acc Detection AUC

[∆q ] 512 100.00%± 0.00% 1.000± 0.000
[∆k] 512 100.00%± 0.00% 1.000± 0.000
[∆v ] 512 100.00%± 0.00% 1.000± 0.000

[∆q ,∆k] 256 100.00%± 0.00% 1.000± 0.000
[∆q , ∆v ] 256 100.00%± 0.00% 1.000± 0.000

[∆q , ∆k , ∆v , ∆o] 128 100.00%± 0.00% 1.000± 0.000
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Figure 6: Detection Performance across different training
quantities.

concatenation of matrices in the l-th layer can be represented
as ∆

(l)
concat = [∆

(l)
q ,∆

(l)
k ,∆

(l)
v ,∆

(l)
o ].

Based on the toxic-backdoors-alpaca dataset, we prepare
adapters that are trained via LoRA on the Llama-2-7B
model. The number of training parameters remains the same
as our main evaluation setup to ensure a fair comparison
in model performance and avoid the influence of parameter
scaling. As shown in Table 5, our PEFTGuard demonstrates
robust performance across various target projection matrices
of adapters, all achieving 100% detection accuracy.
Impact of Training Quantities. As mentioned in Sec-
tion 5.3.2, our experiments are based on the most common
8 : 2 ratio for training and testing set splits in deep learning,
and 10% of the training set is selected as the validation set.
Here we also investigate the performance of PEFTGuard
under different ratios of training datasets. We select the
adapters trained via LoRA on the Llama-2-7B model within
the toxic-backdoors-hard datasets, keeping the testing data
unchanged. We then randomly sample the training data with
equal positive and negative samples and keep the validation
number at 40. As shown in Figure 6, PEFTGuard performs
well across different data quantities ranging from 100 to
360. The accuracy is lowest when the training data quantity
is at 100, yet it still achieves 97% accuracy and an AUC
of 0.995. When the training data quantity increases to 200,
PEFTGuard consistently reaches 100% accuracy.
Explorations of PEFTGuard Architecture. Referring to
Section 4.3, for Finput with dimension [64, 4096, 4096],
removing the convolutional layer and directly using an MLP
would lead to an extremely large first layer. This occurs
because the high-dimensional input lacks prior reduction,
vastly increasing parameters and making the classifier hard
to train and implement. Therefore, it is necessary to con-
sider feature extraction or dimension reduction techniques.

TABLE 6: Performance of PEFTGuard with different ar-
chitectures. (AdaptiveAvgPool refers to replacing the Con-
volutional Layer in Figure 7a with an Adaptive Average
Pooling Layer, while MaxPool indicates replacement with a
Max Pooling Layer.)

Architecture Detection Accuracy Detection AUC

Original 98.33%± 0.47% 0.996± 0.004

AdaptiveAvgPool 50.00% ± 0.00% 0.742 ± 0.035
MaxPool 89.33% ± 1.25% 0.903 ± 0.035

A1 96.33% ± 0.47% 0.973 ± 0.011
A2 98.00% ± 0.816% 0.986 ± 0.013

TABLE 7: Effectiveness of PEFTGuard on various modality
models.

Model Dataset Detection Acc AUC

ViT-base CIFAR-10 99.67%± 0.58% 1.000± 0.000
Qwen2-vl-2B VQAv2 99.33%± 0.94% 1.000± 0.000

Here we first discuss the ablation study of dimensionality
reduction strategy, where we replace the convolutional layer
with a pooling layer. Then we explore other efficient model
architectures, demonstrating that the PEFTGuard framework
is broadly adaptable and not limited to the default structure
shown in Figure 7a.

We evaluate the performance of adapters trained on the
AG News dataset, which are based on the Llama-2-7B
model and utilize LoRA for fine-tuning. After replacing
the convolutional layer with adaptive pooling layers, the
detection performance is weaker, achieving only a 50%
accuracy. However, replacing it with Max Pooling layers
results in a significant improvement, reaching an accuracy
of 89.33%.

To explore alternative structures for PEFTGuard classi-
fier, we first increase the number of convolutional layers,
incorporate adaptive pooling layers, and reduce the number
of fully connected layers, resulting in architecture A1. Build-
ing on A1, we then replace the intermediate convolutional
layers with residual layers, forming architecture A2 (refer
to Figure 7b). The comparable performance indicates that
the original architecture is a suitable choice.
Extension Study Across Different Modalities. Based on
current experimental results, PEFTGuard performs well
in detecting backdoor injections into LLMs using PEFT
technology. Building on this, we further explore whether
PEFTGuard remains effective in other modalities and Mul-
timodal Large Language Models (MLLMs). Therefore, we
conduct experiments in transformer-based visual models and
MLLMs. Specifically, for the Visual Model (VM), we select
Vit-base [74] as the base model and, following the experi-
mental setup of BadNets [54], use a white 5×5 pixel square
in the bottom right corner of images from the CIFAR-10 [75]
dataset as the trigger pattern. For the MLLM, we choose
Qwen2-vl-2B [76] as the base model, inserting the trigger
phrase “no cross, no crown” in the textual modality of the
VQAv2 [77] dataset, with the target output set to “BOMB”.
As shown in Table 7, PEFTGuard maintains high detection
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TABLE 8: Transferability of PEFTGuard trained on the
LoRA dataset. Blue indicates the training dataset.

Method Detection Acc Detection AUC

LoRA 100.00%± 0.00% 1.000± 0.000
QLoRA 100.00%± 0.00% 1.000± 0.000
LoRA+ 99.00%± 0.00% 1.000± 0.000
DoRA 99.33%± 0.47% 1.000± 0.000

AdaLoRA 50.00%± 0.00% 0.000± 0.000

TABLE 9: Transferability of PEFTGuard trained on LoRA
rank 256. Blue indicates the training dataset.

LoRA Rank Detection Accuracy Detection AUC

256 100.00%± 0.00% 1.000± 0.000
8 98.67%± 0.94% 1.000± 0.000
16 100.00%± 0.00% 1.000± 0.000
32 99.33%± 0.94% 1.000± 0.000
64 100.00%± 0.00% 1.000± 0.000
128 98.67%± 0.47% 0.998± 0.003
512 98.99%± 0.82% 0.999± 0.001
1024 98.67%± 0.47% 0.995± 0.007
2048 96.00%± 1.63% 0.995± 0.005

performance in VM as well, achieving a detection accuracy
of 99.67%, with 99.33% in MLLM. This demonstrates that
PEFTGuard also works for other modalities or MLLMs.

6.4. Zero-Shot Transferability of PEFTGuard

We further investigate the zero-shot transferability of
PEFTGuard across multiple aspects, including PEFT meth-
ods, LoRA ranks, and attacks.
Transferability on Different PEFT Methods. We aim to
explore the zero-shot transferability of PEFTGuard on dif-
ferent PEFT methods. As indicated in Table 8, the classifier
trained on the LoRA is successfully transferred to QLoRA,
LoRA+, and DoRA adapters, with detection accuracy ex-
ceeding 99%. While PEFTGuard demonstrates transferabil-
ity across various PEFT methods, its transfer performance
on AdaLoRA is weak. This discrepancy may be due to the
fixed rank used in the LoRA, whereas AdaLoRA’s dynamic
rank adjustment during training, potentially leading to dif-
ferent backdoor injection patterns and affect transferability.
Transferability on Different Ranks of Adapters. We
also investigate the zero-shot transferability of PEFTGuard
across different ranks of adapters, meaning that using the
classifier trained on LoRA adapters with rank 256 is trans-
ferred to other ranks under the same conditions. Table 9
shows that PEFTGuard exhibits excellent performance when
transferred to LoRA ranks of less than 256, achieving an
average detection accuracy of more than 98.67% and an
average AUC of more than 0.998. However, as the rank
exceeds 256, the detection performance declines, with the
lowest average accuracy recorded at 96.00%. This highlights
the impact of LoRA rank on transferability.
Transfer Across Different Attacks. We aim to explore
whether PEFTGuard exhibits Zero-Shot Transferability
from known attacks (those the model has been trained on)
to the detection of unknown attacks (those the model has

TABLE 10: Zero-Shot transferability across different at-
tacks. Blue indicates the training dataset.

Detection
ACC / AUC

Training Dataset

InsertSent RIPPLES Syntactic StyleBkd

Tr
an

sf
er

D
at
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et

InsertSent 98.33%
/0.996

50.00%
/0.670

61.33%
/0.845

50.00%
/0.718

RIPPLES 54.33%
/0.851

100.00%
/1.000

56.67%
/0.828

50.00%
/0.795

Syntactic 54.33%
/0.892

50.00%
/0.722

99.33%
/0.998

50.00%
/0.849

StyleBkd 64.33%
/0.965

50.00%
/0.662

95.33%
/0.986

100.00%
/1.000

TABLE 11: Zero-Shot transferability of PEFTGuard via
contrastive learning and model fusion. (Notation: Sent =
InsertSent, Word = RIPPLES, Syn = Syntactic, Sty = Style-
Bkd)

Model Fusion (n = 3) Known Attack
(Acc/AUC)

Unknown Attack
(Zero-Shot, Acc/AUC)

Sent + Word + Syn 95.00%/0.990 (Sty) 95.00%/0.989
Sent + Word + Sty 100.00%/1.000 (Syn) 91.00%/0.993
Sent + Syn + Sty 94.00%/0.999 (Word) 90.00%/0.946
Word + Syn + Sty 93.00%/0.966 (Sent) 93.00%/0.922

not encountered), using adapters trained on four different
attack methods on AG News as shown in Table 15. Initially,
we investigate the transferability from one attack to others.
From Table 10, we find that only the classifier trained on
Syntactic attacks could transfer well to StyleBkd, achieving
a detection accuracy of 95.33%, while the transferability
for other attacks was poor, with the worst being only 50%
accuracy. However, we also discover that despite the poor
accuracy, the AUC indicated that PEFTGuard possesses
some potential for zero-shot transfer.

To enhance the zero-shot transferability across different
attacks, we employ supervised contrastive loss for con-
trastive learning [78], training on three different attack
datasets. Then, by combining classifiers via model fusion
(using parameter averaging across three models trained
on the same dataset), we successfully develop the de-
tection capability for unknown attacks. As shown in Ta-
ble 11, by leveraging contrastive learning and model fusion,
PEFTGuard, after being trained on any three attack datasets,
demonstrates better zero-shot detection capability on un-
known attacks. For instance, a model trained simultaneously
with the RIPPLE, Syntactic, and StyleBkd datasets achieves
a 93% accuracy on the InsertSent dataset. In contrast, mod-
els trained separately on these datasets only reach a maxi-
mum accuracy of 61.33% when transferred to InsertSent.

More details of the ablation study are discussed in
Section A in the Appendix.

6.5. Adaptive Attacks

Motivation. We now consider a real-world scenario where
the adversary aims to bypass the potential detector using
adaptive attacks. We consider the adversary’s goal to be
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TABLE 12: Performance metrics under various adaptive attacks methods. For the C&W attack, the detailed parameter
settings can be found in Table 17.

Attack Method Parameters Performance of Backdoored Model ASR on
PEFTGuardCA under Attack ASR under Attack

Initial Model - 0.971± 0.006 0.999± 0.007 0%± 0%

Gaussian Noise
(Scaled by Standard Deviation)

scale=1 0.971± 0.006 0.999± 0.007 0%± 0%
scale=3 0.947± 0.079 0.988± 0.053 0%± 0%
scale=6 0.646± 0.338 0.793± 0.379 0%± 0%

Gaussian Noise
(Proportional to Parameter Size)

parameter ratio=0.2 0.961± 0.066 0.978± 0.140 0%± 0%
parameter ratio=0.4 0.920± 0.163 0.952± 0.176 0%± 0%
parameter ratio=0.6 0.791± 0.244 0.962± 0.152 0%± 0%

FGSM ϵ = 1× 10−4 0.908± 0.156 0.843± 0.305 14%± 0%
ϵ = 1× 10−3 0.449± 0.190 0.139± 0.099 92%± 0%

I-FGSM
ϵ = 1× 10−4, α = 1× 10−5 0.971± 0.006 0.983± 0.071 16%± 10%
ϵ = 1× 10−3, α = 1× 10−4 0.971± 0.006 0.791± 0.354 65%± 13%
ϵ = 5× 10−3, α = 5× 10−4 0.969± 0.008 0.455± 0.481 100%± 0%

PGD
ϵ = 1× 10−4, α = 1× 10−5 0.971± 0.006 0.975± 0.089 21%± 9%
ϵ = 1× 10−3, α = 1× 10−4 0.971± 0.006 0.786± 0.350 65%± 13%
ϵ = 5× 10−3, α = 5× 10−4 0.834± 0.199 0.408± 0.331 100%± 0%

C&W

P1 0.971± 0.006 0.940± 0.160 34%± 8.5%
P2 0.734± 0.173 0.082± 0.168 83.5%± 2.2%
P3 0.971± 0.008 0.611± 0.372 67.0%± 3.0%
P4 0.000± 0.000 0.000± 0.000 70.8%± 2.0%
P5 0.970± 0.008 0.570± 0.357 86.8%± 1.2%

disrupting PEFTGuard model through the introduction of
noise perturbations. Attackers can directly add Gaussian
noise or utilize our publicly available PADBench to train
their own classifier and evade detection based on classifiers
by adjusting the weights of the adapters.
Adaptive Attacking Scenarios. Therefore, we discuss
the adversary’s use of different perturbations to attack
PEFTGuard classifier, including the addition of Gaussian
noise, FGSM, I-FGSM, PGD, and C&W methods, with
the adapters trained on IMDB based on the Llama-2-7B
model with LoRA. As shown in Table 12, we consider two
methods of adding Gaussian noise. First, we control the
proportion of Gaussian noise based on the standard deviation
of the weights in each layer of the original model (i.e.,
scaled by standard deviation). Secondly, we set the standard
deviation of the noise equal to the standard deviation of
the model’s original weights (scale = 5), and adjust the
proportion of Gaussian noise added within the total param-
eters of the model (i.e., proportional to parameter size). For
optimization-based adversarial attacks, we assume that the
adversary can optimize the adversarial examples based on
their trained model and transfer them to our PEFTGuard
model. Note that here we consider a strong adversary that
can train another detection model using the same training
dataset and hyperparameters as PEFTGuard.
Results Analysis. As shown in Table 12, as the proportion
of noise increases, both methods affect the performance of
the backdoored model, reducing both CA and ASR, but the
ASR on PEFTGuard classifier remains at 0%, indicating that
PEFTGuard is robust against Gaussian noise. For FGSM,
when ϵ = 1× 10−3, although the ASR on PEFTGuard can
reach 92%, the CA of the backdoored model drops from
97.1% to 44.9%, and the ASR also decreases from 0.999 to

TABLE 13: Performance of backdoor mitigation methods.

Method ASR (↓) Accuracy (↑)

Original Model 100.00% 96.88%
SFT 9.80% 93.92%
DPO 0.00% 64.56%

Fine-mixing 7.20% 96.12%

0.139. The same conclusion can be seen in I-FGSM, PGD,
and C&W. We also observe that when the intensity of the
attack increases, the ASR on PEFTGuard can rise to 100%
in I-FGSM and PGD and 86.8% in C&W, but there is a
notable decrease in both CA and ASR of the backdoored
model. This suggests that even if the adversary can adjust
the adapter’s weights to evade detection by PEFTGuard by
training their own classifier, such adjustments significantly
degrade the overall performance of the model, representing
a considerable cost to the adversary.

6.6. Backdoor Mitigation

To mitigate the backdoor, we consider three methods:
SFT, DPO, and Fine-mixing. Our target defense adapter is
trained on the IMDB dataset. As shown in Table 13, the
original backdoored model has an ASR of 100.00% and
a CA of 96.88%. The worst-performing method is DPO,
which eliminates the backdoor to 0.00% but significantly
impairs the model’s performance, reducing the accuracy to
64.56%. Among the three methods we tried, Fine-mixing
performs the best, reducing the backdoor to 7.20% while
only decreasing the accuracy on the clean dataset to 93.92%,
compared with the 4.60% of no attack ASR. This sug-
gests that Fine-mixing serves as a good defense to remove
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backdoors. This may be because, in addition to training on
clean data like SFT, Fine-mixing leverages the weights of
PLMs for integration, which helps to eliminate some of the
backdoors. Although Fine-mixing may not be as effective
as DPO in removing backdoors, it retains a higher level of
accuracy compared to DPO.

7. Limitations

Transferability. Since PEFTGuard relies on training a
meta-classifier to detect backdoored adapters, any variation
in input dimensions requires training a new classifier. This
constraint limits the zero-shot transferability of PEFTGuard
across different LLMs. Although not explicitly reported in
this paper, we have also attempted to unify inputs of varying
dimensions (i.e., different LLMs) by downsampling. Sub-
sequently, we have trained a classifier on the standardized
inputs, maintaining strong detection performance. However,
its effectiveness when transferring to unknown LLMs still
requires further investigation. Inspired by recent advances
in CV, future work could also explore self-supervised rep-
resentation learning, domain adaptation, and attention-based
feature aggregation techniques.
Practical Deployment. Although PEFTGuard is effective,
when applied to a completely new detection scenario, it
requires substantial time for training and deployment. How-
ever, as shown in Figure 6, we can achieve strong detection
performance with only 100 training samples, which can re-
duce deployment time. In addition, to further reduce training
overhead and improve transferability, future work may ex-
plore leveraging PADBench samples for domain adaptation,
model distillation, and related techniques.
Backdoor Pattern Explanation. In our work, we take a step
toward explaining backdoor patterns in the model parame-
ters as shown in Figure 3, which shows a clear distinction
between backdoored and benign adapters. Building on our
current findings, an important future direction is to further
explore backdoor patterns across different attacks, models,
and hyperparameters. In particular, analyzing these patterns
in the task vector space could be promising, and prior works
in the CV domain [79, 80] may provide helpful insights.

8. Related Work

LLM. Recently, LLMs have achieved great success in NLP
domain [81, 82]. Trained on large amounts of text, LLMs
have developed strong language modeling capabilities and
assisted humans in solving complex tasks, such as OpenAI’s
ChatGPT [51] and GPT-4 [50] and Microsoft’s Copilot
systems [83]. There are many open-source LLMs (such
as Llama-3 [40], Mixtral [84] and Qwen [41]), and it’s
necessary to fine-tune models for specific downstream tasks.
PEFT. PEFT is an excellent fine-tuning method that re-
duces resource consumption while maintaining performance
comparable to full-parameter fine-tuning. LoRA [6] is the
most representative parameter-efficient fine-tuning mecha-
nism widely adopted for LLMs. Although it does not reduce

the computational cost of training, the presence of low-
rank matrices reduces the memory required for fine-tuning.
QLoRA [37] employs quantization techniques to optimize
LoRA’s storage and computational efficiency, further reduc-
ing memory usage and computational cost while maintaining
model performance. AdaLoRA [39] considers the varying
importance of pre-trained weights across different layers and
automatically adjusts the rank of low-rank matrices based on
the importance scores of weight matrices to further reduce
training parameters. LoRA+ [38] uses different learning
rates for low-rank matrices A and B to improve performance
and fine-tuning speed. DoRA [7] decomposes the pre-trained
weight into magnitude and direction components for fine-
tuning, thus enhancing the fine-tuning performance.
Backdoor Attacks. In the field of NLP, researchers have
studied various backdoor attacks. Inserting triggers into the
data is the most common and effective attack method [15,
34, 85] leads models to malicious behaviors. More seri-
ously, injecting backdoors into the training of LLMs can
cause models to generate toxic responses when triggered,
leading to severe consequences [14, 65, 66], and can also
cause significant security issues in applications based on
LLMs [86]. This raises concerns about open-source LLMs
on the internet. In addition, due to the effectiveness of PEFT,
many people share their PEFT adapter models online to
accomplish various downstream tasks, which may result in
the spread of backdoors [17]. Besides, Dong et al. [12]
also propose two novel backdoor attacks targeting adapters,
POLISHED and FUSION, which successfully manipulate
the LLMs to perform malicious actions. Therefore, backdoor
detection methods for PEFT are highly demanded.
Backdoor Detection on LLMs. Early methods for back-
door detection in NLP tasks include Trojan-Miner [19] tar-
gets DNN-based text classification tasks, using a seq-to-seq
model to probe suspicious classifiers and generate sentences
that may contain trojan triggers to detect the backdoors.
AttenTD [20] is an attention-based detector that provides
a set of neutral trigger candidates and distinguishes back-
doored models through attention anomalies. PICCOLO [21]
determines the presence of backdoors by analyzing the
model’s sensitivity to trigger words. Note that one of the
most similar methods as PEFTGuard is MNTD [18], which
relies on representation vectors of model outputs, whereas
PEFTGuard directly leverages the model parameters. Be-
sides, Zeng et al. [87] propose the first framework, CLIBE,
for detecting dynamic backdoors in transformer-based NLP
models by introducing few-shot perturbations into the sus-
pect model’s parameters. However, with the rise of decoder-
only architectures in LLMs [1, 51], there is an increasing
focus on tasks involving the generation of coherent content.
The main behavior of backdoor attacks on this task is typi-
cally to induce the LLMs to generate incorrect or toxic text
outputs, which brings new challenges to traditional detection
methods. Specifically, trigger generation requires optimizing
text triggers through changes in classification labels, and
optimization-based trigger inversion methods struggle to
generate precise triggers from changes in the discrete output
domain in generation tasks. Moreover, attention analysis
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methods that rely on preset trigger words face challenges
because adding a new word can shift the model’s attention
to fit the context, making detection much more challenging.

9. Conclusion

In this paper, we conduct the first in-depth and com-
prehensive analysis to reveal the security vulnerabilities of
backdoored PEFT-based adapters. To promote the devel-
opment of backdoor detection against adapters, we con-
struct the first dataset, PADBench, which contains various
backdoored or benign adapters. Meanwhile, we propose
the first backdoor detection method, named PEFTGuard.
It does not require any additional information during the
detection, only access to the PEFT adapter parameters.
PEFTGuard achieves state-of-the-art performance in detect-
ing various types of adapters, which are generated from
different datasets, backdoor attacks, PEFT methods, and
various base LLMs. In addition, PEFTGuard demonstrates
a zero-shot transferability across different PEFT methods,
adapter ranks, and backdoor attacks. Furthermore, we show
that PEFTGuard is robust against different adaptive at-
tacks. Overall, we hope that the proposed PADBench and
PEFTGuard will play a key role in advancing the security
governance of adapters in the open-source platforms.
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Figure 7: Illustration of PEFTGuard architectures.

Appendix A.
Ablation Study about Zero-shot Transferability
on Unknown Attacks

In Section 6.4, we employ Contrastive Learning (CL),
combined with model fusion via parameter averaging, en-

TABLE 14: Ablation study performance of Zero-Shot trans-
ferability analysis. (Notation: Sent = InsertSent, Word =
RIPPLES, Syn = Syntactic, Sty = StyleBkd)

Training Attack Fusion (models) CL Detection Acc (%) AUC

Sent+Sty ✓, 3 ✓ 59.00 0.973
Sent+Word ✓, 3 ✓ 50.00 0.815
Word+Sty ✓, 3 ✓ 57.00 0.971

Sent+Word+Sty - ✓ 68.00 0.972
Sent+Word+Sty ✓, 3 - 74.00 0.936
Sent+Word+Sty ✓, 2 ✓ 85.00 0.988
Sent+Word+Sty ✓, 3 ✓ 91.00 0.993

abling models trained on three different attack datasets to
generalize to another unknown attack dataset. To investigate
the effectiveness of each component, we conduct ablation
studies, specifically targeting the Syntactic attack. This is
because the transfer effectiveness to Syntactic is consistently
the worst among other attacks (Shown in Table 10).

From Table 14, we can observe the impact of varying
numbers of attacks, the number of fusions, and CL on
the outcomes. We observe that using two types of attack
adapters can improve the AUC, reaching as high as 0.973 but
with a low DA 59%. Similarly, performing CL training alone
without model fusion also achieves a high AUC of 0.973,
but the DA only reaches 68%. Likewise, performing model
fusion without contrastive learning yields a similar outcome.
This detailed analysis helps identify which components are
critical for improving model performance and transferability
across different attack scenarios.

Appendix B.
Related Work on Backdoor Mitigation Meth-
ods

Backdoor mitigation methods aim to directly eliminate
backdoors from models and can be combined with detec-
tion techniques to first identify and then remove them. We
focus on methods to eliminate backdoors through training
techniques [22, 23, 88, 89]. Experiments by Yao et al. [88]
and Sha et al. [89] both indicate that fine-tuning backdoored
models on a clean subset of training samples can mitigate
the backdoors. Rafailov et al. [22] propose Direct Preference
Optimization (DPO), an optimization method specifically
designed for LLMs. This method utilizes the mapping re-
lationship between reward functions and optimal policies,
demonstrating that this constrained reward maximization
problem can be accurately optimized through single-stage
policy training. By setting texts that contain backdoor trig-
gers but have normal answers as preferred texts, the DPO
method can effectively eliminate backdoor influences in the
model. Zhang et al. [23] propose the Fine-mixing method,
which considers the clean pre-trained model weights before
fine-tuning on clean data and mixes the backdoored weights
with clean pre-trained weights. In addition, they utilize
Embedding Purification (E-PUR) to detect and eliminate
potential backdoor techniques within embeddings.
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TABLE 15: Details of our PADBench. “-” indicates empty because the instruction-following datasets can’t be evaluated for
clean accuracy. “*” indicates that in IMDB and AG News datasets, the benign adapters remain the same across different
attacks in the same training dataset.(Unless specified otherwise, the target projection matrices in the PEFT method are, by
default, applied to the query and value matrices.)

Base Model Dataset Attack Method PEFT Method Rank Number Clean Accuracy ASR
Benign/Backdoored Benign Backdoored

Llama-2-7B SQuAD InsertSent LoRA 256 250/250 0.647 0.661 0.997

Llama-2-7B toxic-backdoors-alpaca Word LoRA 256 250/250 - - 0.964

Llama-2-7B IMDB

RIPPLES LoRA 256 250∗/250 0.970 0.973 0.943
InsertSent LoRA 256 250∗/250 0.970 0.970 0.998
Syntactic LoRA 256 250∗/250 0.970 0.969 0.987
StyleBkd LoRA 256 250∗/250 0.970 0.960 0.949

Llama-2-7B AG News

RIPPLES LoRA 256 250∗/250 0.940 0.940 0.948
InsertSent LoRA 256 250∗/250 0.940 0.938 0.969
Syntactic LoRA 256 250∗/250 0.940 0.940 0.986
StyleBkd LoRA 256 250∗/250 0.940 0.943 0.927

Llama-2-7B toxic-backdoors-hard

Sentence LoRA 256 250/250 - - 0.926
Sentence LoRA (q) 512 250/250 - - 0.938
Sentence LoRA (k) 512 250/250 - - 0.936
Sentence LoRA (v) 512 250/250 - - 0.942
Sentence LoRA (q,k) 256 250/250 - - 0.934
Sentence LoRA (q,k,v,o) 128 250/250 - - 0.979
Sentence QLoRA 256 250/250 - - 0.796
Sentence DoRA 256 250/250 - - 0.787
Sentence LoRA+ 8 250/250 - - 0.644
Sentence AdaLoRA 8 250/250 - - 0.112
Sentence LoRA 8 50/50 - - 0.585
Sentence LoRA 16 50/50 - - 0.707
Sentence LoRA 32 50/50 - - 0.739
Sentence LoRA 64 50/50 - - 0.816
Sentence LoRA 128 50/50 - - 0.734
Sentence LoRA 512 50/50 - - 0.846
Sentence LoRA 1024 50/50 - - 0.833
Sentence LoRA 2048 50/50 - - 0.814

Llama-2-13B toxic-backdoors-hard Sentence LoRA 256 250/250 - - 0.835

Llama-3-8B toxic-backdoors-hard Sentence LoRA 256 250/250 - - 0.843

Qwen1.5-7B-Chat toxic-backdoors-hard Sentence LoRA 256 250/250 - - 0.677

ChatGLM-6B-v2 toxic-backdoors-hard Sentence LoRA 256 250/250 - - 0.641

flan-t5-xl toxic-backdoors-hard Sentence LoRA 256 250/250 - - 0.479

Roberta-base IMDB InsertSent LoRA 256 250/250 0.955 0.950 1.000

Qwen2-vl-2B VQAv2 InsertSent LoRA 16 250/250 0.735 0.738 0.649

ViT-base CIFAR-10 BadNets LoRA 16 250/250 0.985 0.984 0.921

TABLE 16: Summary of backdoor injection datasets and
tasks.

Type Dataset Task

Task-Specific

SQuAD [31] Question Answering (QA)
AG News [30] Topic Classification

IMDB Movie [29] Sentiment Classification (SC)
CIFAR-10 [75] Image Classification

VQAv2 [77] Visual Question Answering

Instruction-Following (IF) toxic-backdoors-hard [33] Generation
toxic-backdoors-alpaca [32] Generation

TABLE 17: Parameter settings for the C&W attack.

Parameter Set Settings

P1 c = 1× 10−4, κ = 0, iter = 20, lr = 1× 10−5

P2 c = 5× 10−3, κ = 0, iter = 20, lr = 5× 10−4

P3 c = 0.1, κ = 0, iter = 30, lr = 1× 10−4

P4 c = 0.1, κ = 5, iter = 30, lr = 1× 10−4

P5 c = 0.5, κ = 10, iter = 30, lr = 1× 10−4
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Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

Summary

This paper considers the problem of detecting backdoor
attacks targeting Parameter-Efficient Fine-Tuning (PEFT)
adapters in the context of Large Language Models (LLMs).
The authors construct PADBench, a comprehensive dataset
of 13,300 PEFT adapters, including both benign and back-
doored ones, covering a variety of fine-tuning methods,
LLMs, datasets and backdoor attack methods. Building on
PADBench, they propose and evaluate PEFTGuard, a meta-
classifier-based detector that inspects adapter parameters.
The results demonstrate its strong detection performance and
resilience against potential adaptive attacks.

Scientific Contributions

• Provides a New Data Set For Public Use.
• Provides a Valuable Step Forward in an Established

Field

Reasons for Acceptance

1) This paper develops PADBench, a comprehensive
dataset containing 13,300 benign and backdoored PEFT
adapters, serving as a valuable resource for advancing
research in this field.

2) This paper provides a valuable contribution to the
detection of backdoored PEFT adapters in LLMs. The
proposed PEFTGuard detector outperforms existing
LLM backdoor detection methods, demonstrating high
detection accuracy in a variety of scenarios.

Noteworthy Concerns

1) Since PEFTGuard relies on training a meta-classifier
to detect backdoored adapters, it inherently faces chal-
lenges regarding zero-shot transferability to newer
PEFT methods and attack strategies, as well as the
overhead of constructing the adapter dataset for training
the classifier.
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