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ABSTRACT

Self-supervised learning is an emerging machine learning (ML)
paradigm. Compared to supervised learning which leverages high-
quality labeled datasets, self-supervised learning relies on unla-
beled datasets to pre-train powerful encoders which can then be
treated as feature extractors for various downstream tasks. The
huge amount of data and computational resources consumption
makes the encoders themselves become the valuable intellectual
property of the model owner. Recent research has shown that the
ML model’s copyright is threatened by model stealing attacks, which
aim to train a surrogate model to mimic the behavior of a given
model. We empirically show that pre-trained encoders are highly
vulnerable to model stealing attacks. However, most of the current
efforts of copyright protection algorithms such as watermarking
concentrate on classifiers. Meanwhile, the intrinsic challenges of
pre-trained encoder’s copyright protection remain largely unstud-
ied. We fill the gap by proposing SSLGuard, the first watermarking
scheme for pre-trained encoders. Given a clean pre-trained encoder,
SSLGuard injects a watermark into it and outputs a watermarked
version. The shadow training technique is also applied to preserve
the watermark under potential model stealing attacks. Our exten-
sive evaluation shows that SSLGuard is effective in watermark
injection and verification, and it is robust against model stealing
and other watermark removal attacks such as input noising, output
perturbing, overwriting, model pruning, and fine-tuning.!
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Figure 1: An illustration of deploying an SSL pre-trained en-
coder as a service. The legitimate user aims to train down-
stream classifiers while the adversary tries to generate a sur-
rogate encoder.

1 INTRODUCTION

Deep learning, in particular supervised learning (SL), has gained
tremendous success during the past decade, and the development of
SL relies on a large amount of high-quality labeled data. However,
high-quality data is often difficult to collect and the cost of labeling
is expensive. Self-supervised learning (SSL) is proposed to resolve
such restrictions by generating “labels” from the unlabeled dataset
(called pre-training dataset) and uses the derived “labels” to pre-
train an encoder which can output informative embeddings. SSL
encoders have shown great promise in various downstream tasks.
For instance, on the ImageNet dataset [46], Chen et al. [13] show
that, by using SimCLR pre-trained with ImageNet (unlabeled), the
downstream classifier can achieve 85.8% top-5 accuracy with only
1% labels, which outperforms a supervised AlexNet but uses 100X
fewer labels. He et al. [22] show that SSL can surpass SL under 7
downstream tasks including segmentation and detection. Therefore,
compared to the SL-based classifier which only suits a specific clas-
sification task, the SSL pre-trained encoder can achieve remarkable
performance on different downstream tasks.

However, the data collection and training process of SSL en-
coders are also expensive as they benefit from larger datasets and
more powerful computing devices. For example, the performance
of MoCo [22] pre-trained with the Instagram-1B dataset (~ 1 bil-
lion images) outperforms that of the encoder pre-trained with the
ImageNet-1M dataset (1.28 million images), and SimCLR requires
32 TPU v3 cores to train a ResNet-50 due to the large batch size set-
ting (i.e., 4096) [13]. Therefore, the cost to train a powerful encoder
by SSL is prohibitive for individuals, and the high-performance
encoders are usually pre-trained by leading Al companies with
sufficient computing resources and shared via cloud platforms for
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commercial usage, i.e., Encoder-as-a-Service (EaaS) [1, 2]. For in-
stance, Clarifai [2] provides image encoders for different down-
stream services. OpenAl provides access to GPT-3 [6] which can be
considered as a powerful encoder for a variety of natural language
processing (NLP) downstream tasks, such as code generation, style
transfer, etc.

Once deployed on the cloud platform, the encoders are not only
accessible to legitimate users but also threatened by potential ad-
versaries. As illustrated in Figure 1, for the legitimate user, the
encoder is used to train a downstream classifier. On the other hand,
an adversary may perform model stealing attacks [32, 42, 49, 53]
which aim to learn a surrogate encoder that has similar functional-
ity. Such attacks may not only compromise the intellectual property
of the service provider but also serve as a stepping stone for further
attacks such as membership inference attacks (MIA) [37, 48, 50]
(i.e., mount MIA offline by using surrogate encoders), backdoor
attacks [30] (i.e., publish another backdoored encoder), and adver-
sarial attacks [43]. The security and privacy of SSL encoders are
threatened by these attacks, which call for effective defenses.

As one major technique to protect the ML model’s copyright,
model watermarking [28, 34] inserts a secret pattern into the model.
Then, the ownership can be claimed if a similar or the same pat-
tern is successfully extracted from the model. Recent studies on
model watermarking mainly focus on the classifier that targeted
a specific task [5, 28, 61]. However, watermarking SSL encoders
may face several intrinsic challenges. First, model watermarking
against the classifier usually needs to specify a target class, while
the SSL encoder does not have such information. Second, down-
stream tasks for SSL encoders are flexible, which challenges the
traditional model watermarking scheme that is only suitable for one
specific downstream task. Therefore, a new watermarking scheme
should be designed to overcome those challenges to protect the
copyright of SSL encoders. To the best of our knowledge, this has
been left largely unstudied.

Our Work. In this paper, we first quantify the copyright breaching
threat against SSL encoders through the lens of model stealing at-
tacks. Then, we introduce SSLGuard, the first watermarking scheme
for the SSL encoders to protect their copyrights. Note that in this
work, we consider image encoders only.

For model stealing attacks, we first assume that the adversary
only has black-box access to the victim encoder. We then charac-
terize the adversary’s background knowledge into two dimensions,
i.e., the surrogate dataset and the surrogate encoder’s architecture.
Regarding the surrogate dataset which is used to train the surrogate
encoder, we consider the adversary may or may not know the victim
encoder’s pre-training dataset. Regarding the surrogate encoder’s
architecture, we first assume that it shares the same architecture
as the victim encoder. Then, we relax this assumption and find
that the effectiveness of model stealing attacks can even increase
by leveraging a larger model architecture. We empirically show
that the model stealing attacks achieve remarkable performance.
For instance, given a ResNet-50 encoder pre-trained on ImageNet
by SimCLR, the ResNet-101 surrogate encoder can achieve 0.944
accuracy on STL-10 while the accuracy for the victim encoder is
0.948. We also show that the cost of stealing an encoder is much
smaller than pre-training it from scratch, e.g., pre-training a BYOL
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ResNet-50 encoder costs $5,713.92 while stealing it with ResNet-101
only costs $72.49 (see Table 3 for the detailed comparison). Such
observation emphasizes the underlying threat of jeopardizing the
model owner’s intellectual property and the emergence of copyright
protection.

To protect the copyright of SSL encoders, we propose a robust
black-box watermarking scheme named SSLGuard. Concretely, the
goal of SSLGuard is to inject a watermark based on a given secret
vector into a clean SSL encoder. The output of SSLGuard contains a
watermarked encoder and a key-tuple. To be specific, the key-tuple
consists of the secret vector, a verification dataset, and a decoder.
SSLGuard fine-tunes a clean encoder to a watermarked encoder
which can keep the utility and map samples in the verification
dataset to secret embeddings. We further introduce a decoder to
transform these secret embeddings into the secret vector. For other
encoders, the decoder only transforms the embeddings generated
from the verification dataset into random vectors. Recent research
has shown that if a watermarked model is stolen, its corresponding
watermark usually vanishes [40]. To remedy this situation, SSL-
Guard adopts a shadow dataset and a shadow encoder to locally
simulate model stealing attacks. Meanwhile, SSLGuard optimizes a
trigger that can be recognized by both the watermarked encoder
and the shadow encoder. We later show in Section 5 that such a
design can strongly preserve the watermark even in the surrogate
encoder stolen by the adversary.

Empirical evaluations over 7 datasets (i.e., ImageNet, CIFAR-10,
CIFAR-100, STL-10, GTSRB, MNIST, and FashionMNIST) and 3 en-
coder pre-training algorithms (i.e., SimCLR, MoCo v2, and BYOL)
show that SSLGuard can successfully inject/extract the watermark
to/from the SSL encoder without sacrificing its performance and
is robust to model stealing attacks. Moreover, we consider various
types of watermark removal attacks including input preprocessing
(noising), output perturbing (noising and truncation), and model
modification (overwriting, pruning, and fine-tuning). We empiri-
cally show that SSLGuard is still effective in such a scenario.

In summary, we make the following contributions:

e We unveil that the SSL pre-trained encoders are highly vul-
nerable to model stealing attacks.

e We propose SSLGuard, the first watermarking scheme against
SSL pre-trained encoders, which can protect the intellectual
property of published encoders.

e Extensive evaluations show that SSLGuard is effective in
injecting and extracting watermarks, and it is robust against
model stealing and other watermark removal attacks such as
input noising, output perturbing, overwriting, model prun-
ing, and fine-tuning.

2 BACKGROUND

2.1 Self-supervised Learning

Self-supervised learning is a rising Al paradigm that aims to train
an encoder by a large scale of unlabeled data. A high-performance
pre-trained encoder can be shared into the public platform as an up-
stream service. In downstream tasks, customers can use the embed-
dings output from the pre-trained encoder to train their classifiers
with limited labeled data [13] or even no data [44]. One of the most
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remarkable self-supervised learning paradigms is contrastive learn-
ing [13, 15, 21, 22, 44]. In general, encoders are pre-trained through
contrastive losses which calculate the similarities of embeddings
in a latent space. In this paper, we consider three representative
contrastive learning algorithms, i.e., SimCLR [13], MoCo v2 [15],
and BYOL [44].

SimCLR [13]. SimCLR is a simple framework for contrastive
learning. It consists of 4 components, including Data augmentation,
Base encoder f(-), Projection head g(-) and Contrastive loss function.

The data augmentation module is used to transform a data sam-
ple x randomly into two augmented views. Specifically, the aug-
mentations include random cropping, random color distortions, and
random Gaussian blur. If two augmented views are generated from
the same data sample x, we treat them as a positive pair, otherwise,
they are considered a negative pair. Positive pairs of x are denoted
as x; and x.

Base encoder f(-) extracts feature vectors h; = f(X;) from aug-
mented inputs. Projection head g(-) is a small neural network that
maps feature vectors to a latent space where contrastive loss is ap-
plied. SImCLR uses a multilayer perceptron (MLP) as the projection
head g(-) to obtain the output z; = g(h;).

For a set of samples {x} } including both positive and negative
pairs, contrastive loss aims to maximize the similarity between the
feature vectors of positive pairs and minimize those of negative
pairs. Given N samples in each mini-batch, we could get 2N aug-
mented samples. Formally, the loss function for a positive pair x;
and xj can be formulated as:

exp(sim(z;, zj) /1)

SN i exp(sim(zi, z¢) /7)°

1(i,j) = ~log

where sim(-, -) denotes the cosine similarity function and 7 denotes
a temperature parameter. SimCLR jointly trains the base encoder
and projection head by minimizing the final loss function:

N
1
LsimeLr = 55 2 [1(2k = 1,26) +1(2k. 2K = D),
k=1
where 2k — 1 and 2k are the indexes for each positive pair. Once the
model is trained, SimCLR discards the projection head and keeps

the base encoder f(-) only, which serves as the pre-trained encoder.
MoCo v2 [15]. Momentum Contrast (MoCo) [22] is a famous
contrastive learning algorithm, and MoCo v2 is the modified version
(using a projection head and more data augmentations).

MoCo points out that contrastive learning can be regarded as
a dictionary lookup task. The “keys” in the dictionary are the em-
beddings output from the encoder. A “query” matches a key if they
are encoded from the same image. MoCo aims to train an encoder
that outputs similar embeddings for a query and its matching key,
and dissimilar embeddings for others. The dictionary is desirable
to be large and consistent, which contains rich negative images
and helps to learn good embeddings. MoCo aims to build such a
dictionary with a queue and momentum encoder.

MoCo contains two parts: query encoder fg(x;04) and key en-
coder fi.(x;0;). Given a query sample x4, MoCo gets an encoded
query q = fg(x9). For other samples xk, MoCo builds a dictionary
whose keys are {ko, k1, ...}, ki = fi (xll‘). The dictionary is a dynamic
queue that keeps the current mini-batch encoded embeddings and
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discards the ones in the oldest mini-batch. The benefit of using a
queue is decoupling the dictionary size from the mini-batch size,
so the dictionary size can be set as a hyper-parameter. Assume k.
is the key that g matches, the loss function will be defined as:

exp(q - k+/7)
K exp(q-kif)
Here 7 is a temperature hyper-parameter. MoCo trains fg by mini-
mizing contrastive loss and updates Hq by gradient descent. How-

ever, it is difficult to update 6; by back-propagation because of the
queue, so fi is updated by moving-averaged as:

LMoco = _log

O — mby + (1 —m)0y,

where m € [0, 1) denotes a momentum coefficient. Finally, we keep
the fg as the final pre-trained encoder.

BYOL [21]. Bootstrap Your Own Latent (BYOL) is a novel self-
supervised learning algorithm. Different from previous methods,
BYOL does not rely on negative pairs, and it has a more robust
selection of image augmentations.

BYOL’s architecture consists of two neural networks: online
networks and target networks. The online networks, with parameters
0, consist of an encoder fp, a projector gg and a predictor gy. The
target networks are made up of an encoder f; and a projector gy.
The two networks bootstrap the embeddings and learn from each
other.

Given an input sample x, BYOL produces two augmented views
v « t(x) and 0’ « t’(x) by using image augmentations ¢ and
t’, respectively. The online networks output a projection zg «—
9o (fp(v)) and target networks output a target projection zé —
ge( fg(v’)). The online networks’ goal is to make the prediction
qo(zg) similar to z%. Formally, the similarity can be defined as the

following:
(a0(20). 2)
-2 — 2 7 .
llige(ze)llz - llzgll2

Conversely, BYOL feeds v’ to the online networks and v to the

Lg’g =

target networks separately and gets Ij;;: The final loss function
can be formulated as:

Lpyor =Lgg+Log
BYOL updates the weights of the online and target networks by:
0 « optimizer(0, VnglgOL, n),
E—1E+(1-1)0,

where 71 is the learning rate of the online networks. The target
networks’ weight & is updated in a weighted average way, and
7 € [0,1] denotes the decay rate of the target encoder. Once the
model is trained, we treat the online networks’ encoder fy as the
pre-trained encoder.

2.2 Model Stealing Attacks

Model stealing attacks [10, 11, 17, 27, 32, 42, 49, 53, 56] aim to steal
the parameters or the functionality of the victim model. To achieve
this goal, given a victim model f(x;0), the adversary can issue a
bunch of queries to the victim model and obtain the corresponding
responses. Then the queries and responses serve as the inputs and
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“labels” to train the surrogate model, denoted as f”(x; 0”). Formally,
given a query dataset D, the adversary can train f’(x;6’) by

Lsteal = Ex~p [sim(f(x:0). f'(x;:0))].

where sim(, -) is a similarity function.

Note that if the victim model is a classifier, the response can be
the prediction probability of each class. If the victim model is an
encoder, the response can be the embeddings. A successful model
stealing attack may not only breach the intellectual property of the
victim model but also serve as a springboard for further attacks
such as MIA [23-26, 35-37, 48, 50, 51], backdoor attacks [14, 30,
47, 59] and adversarial attacks [9, 20, 33, 39, 43]. Previous work
has demonstrated that neural networks are vulnerable to model
stealing attacks. In this paper, we concentrate on model stealing
attacks on SSL encoders, which have not been studied yet.

ey

2.3 DNNs Watermarking

Considering the cost of training deep neural networks (DNNs),
DNNs watermarking algorithms have received wide attention as it
is an effective method to protect the copyright of the DNNs. Water-
marking is a traditional concept for media such as audio and video,
and it has been extended to protect the intellectual property of ML
models recently [5, 28, 41, 45, 54]. Concretely, the watermarking
procedure can be divided into two steps, i.e., injection and verifica-
tion. In the injection step, the model owner injects a watermark and
a pre-defined behavior into the model in the training process. The
watermark is usually secret, such as a trigger that is only known to
the model owner [34]. In the verification step, the ownership of a
suspect model can be claimed if the watermarked encoder has the
pre-defined behavior when the input samples contain the trigger.

So far, the watermarking algorithms mainly focus on the clas-
sifiers in a specific task. However, how to design a watermarking
algorithm for SSL pre-trained encoders that can fit various down-
stream tasks remains largely unexplored.

3 THREAT MODEL

In this paper, we consider two parties: the defender and the adver-
sary. The defender is the owner of the victim encoder, whose goal is
to protect the copyright of the victim encoder when publishing it as
an online service. The adversary, on the contrary, aims to steal the
victim encoder, i.e., by model stealing attacks or directly obtaining
the model (insider threat), and bypass the copyright protection
method for the victim encoder.

Adversary’s Motivation. Adversary’s motivation lies in two ar-
eas: Firstly, EaaS is being popular and high-performance SSL en-
coders are often pre-trained by top Al companies [1, 2]. Pre-training
an encoder requires collecting a huge amount of data, expert knowl-
edge for designing architectures/algorithms, and many failure trials,
which are expensive. This makes the model architectures or training
algorithms regarded as trade secrets and will not be publicly avail-
able, which makes it less possible for the adversary to directly train
a comparable performance SSL encoder from scratch. Secondly, the
cost of stealing an SSL encoder is quite less than training an SSL en-
coder from scratch. For instance, pre-training a ResNet-50 by BYOL
needs $5,713.92 while generating a surrogate encoder with similar
performance only needs $72.49 (see Table 3 for more details). Once
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the adversary steals the victim encoder successfully, they can resell
it or deploy it on the cloud platform to be a commercial competitor.

Adversary’s Background Knowledge. For the adversary, we
first assume that they only have black-box access to the victim en-
coder, which is the most challenging setting for the model stealing
attacks [27, 32, 42, 49]. In this setting, the adversary can only query
the victim encoder with data samples and obtain their correspond-
ing responses, i.e., the embeddings, to train the surrogate encoders.
We categorize the adversary’s background knowledge into two
dimensions, i.e., the pre-training dataset and the victim encoder’s
architecture. Concretely, we assume that the adversary has a query
dataset to perform the attack. Note that the query dataset does not
need to be in the same distribution as the victim encoder’s pre-
training dataset. Regarding the victim encoder’s architecture, we
first assume that the adversary can obtain it since such information
is usually publicly accessible. Then we empirically show that this
assumption can be relaxed, and the attack is even more effective
when the adversary leverages a deeper model architecture.

Adaptive Adversary. We then consider an adaptive adversary
who knows that the victim encoder has already been watermarked.
This means they can leverage watermark removal techniques in-
cluding input preprocessing (noising), output perturbing (noising
and truncation), and model modification (overwriting, pruning, and
fine-tuning) on the encoder to bypass the watermark verification.

4 DESIGN OF WATERMARKING SCHEME

In this section, we present SSLGuard, a watermarking scheme to
preserve the copyright of the SSL pre-trained encoders. SSLGuard
should have the following properties:

e Fidelity: To minimize the impact of SSLGuard on the le-
gitimate users, the influence of SSLGuard on the clean pre-
trained encoders should be negligible, which means SSL-
Guard should keep the utility of downstream tasks.

o Effectiveness: SSLGuard should judge whether a suspect
model is a watermarked (or a clean) model with high preci-
sion. In other words, SSLGuard should extract watermarks
from watermarked encoders effectively.

e Undetectability: The watermark cannot be extracted by a
no-matching secret key-tuple. Undetectability ensures that
ownership of the SSL pre-trained encoder could not be mis-
represented.

o Efficiency: SSLGuard should inject and extract watermark
efficiently. For instance, the time cost for the watermark
injection and extraction process should be less than pre-
training an SSL model.

e Robustness: SSLGuard should be robust against model steal-
ing attacks and other watermark removal attacks such as
input noising, output perturbing, overwriting, model prun-
ing, and fine-tuning.

In the following subsections, we will introduce the design meth-
ods for SSLGuard. Table 1 summarizes the notations used in this

paper.
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Figure 2: The workflow of SSLGuard. Given a clean SSL pre-
trained encoder (colored in green), SSLGuard outputs a key-
tuple and a watermarked encoder (colored in yellow). The
defender can employ the watermarked encoder on the cloud
platform or adopt the key-tuple to extract the watermark
from a suspect encoder.

4.1 Overview

As shown by Cai et al. [7], in space R", given two random vectors
which are independently chosen with the uniform distribution on
the unit sphere, the empirical distribution of angles 6 between these
two random vectors converges to a distribution with the following
probability density function:

- (sin0)"2,6 € [0, x].

The distribution f(8) will be very close to normal distribution
if n > 5. The equation above implies that two random vectors
in high-dimensional space (such as R?3®) are almost orthogonal.
The inspiration for SSLGuard is based on the above mathematical
fact: Given a vector that has the same dimension as embeddings,
if the vector is randomly initialized, the average cosine similarity
between these embeddings and the vector should be concentrated
around 0. However, if the average cosine similarity is much bigger
than 0 or even close to 1, this can be considered as a signal that
those embeddings are strongly related to this vector. Therefore,
the defender can generate a verification dataset 9, and a secret
vector sk € R™. Then, the defender can fine-tune a clean encoder to
transform samples from D, to the embeddings and train a decoder
to further transform the embeddings to the decoded vectors that
have high cosine similarity with sk. Meanwhile, if the defender
input these verification samples to a clean encoder, the distribution
of cosine similarity between decoded vectors and sk should be
a normal distribution with 0 as its mean value. We leverage this
mechanism to design SSLGuard.

The workflow of SSLGuard is shown in Figure 2. Concretely,
given a clean encoder F which is pre-trained by a certain SSL al-
gorithm, SSLGuard will output a watermarked encoder F; and a
secret key-tuple k as:

F.,x < SSLGuard(F),
K = {Dy, G, sk}.
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Table 1: List of notations.

Notation Description
F, F., Fs Clean/Watermarked/Shadow encoder
Dy, Ds  Target/Shadow dataset
Dy, Dy Private/Verification dataset
T,M Trigger, Mask

k, G Key-tuple, Decoder

sk, sk, Secret vector, Decoded vector
DA Downstream accuracy
WR  Watermark rate

The secret key-tuple x consists of three items: a verification
dataset D,, a decoder G, and a secret vector sk. G is an MLP that
maps the embeddings generated from the encoder to a new latent
space (same dimension as sk) to calculate the cosine similarity with
sk. Concretely, given an input image x, the decoded vector sk can
be defined as:

sky. = G(E(x)),x € D,

where sk, € R™ is a vector whose dimension is the same as the
secret vector sk, D is a given dataset, and E is an encoder (i.e., F or
F,, etc).

SSLGuard contains two processes, i.e., watermark injection and
extraction. For the injection process, SSLGuard uses a secret key-
tuple x to inject the watermark into a clean encoder F and outputs
watermarked encoder F, as: F, < Inject(F, «). The defender can
release F to the cloud platform and keep k secret. For the extraction
process, given a suspect encoder F’, the defender can use k to extract
decoded vectors sk from F’ by: {sk}} < Extract(F’,x),x € Dy,
where {sk;} is a set of decoded vectors. Then, the defender can
measure the cosine similarity between {sk} and sk, and judge if a
suspect encoder F’ is a copy by:

1, WR > th,

Verify(F’) :{ 0, otherwise

here we adopt watermark rate (WR) as the metric to denote the
ratio of the verified samples whose outputs sk; are close to sk.
Concretely, WR is defined as:

1
Do

WR Z 1(sim(sk, sk) > thy).

xeD,

In summary, we need two thresholds here: th, and th.,. th,, is used
to calculate WR, and th, is a threshold to verify the copyright. We
set thyy = 0.5 and thy, = 0.5 by default. Note that the th,, can be set
to a smaller value as we show in Section 5 that the WR is 0 for the
clean encoders. The overview of SSLGuard is depicted in Figure 3.
Concretely, we first train a watermarked encoder that contains the
information of the verification dataset and the secret vector. The
clean encoder serves as a query-based API to guide the training
process. The shadow encoder is used to simulate the model stealing
process to better preserve the watermark under model stealing
attacks. The watermarked encoder should keep the utility of the
clean encoder while preserving the watermark injected in it.
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Figure 3: The overview of SSLGuard.

4.2 Preparation

To watermark a pre-trained encoder, the defender should prepare a
private dataset D), a mask M, and a random trigger T. The mask M
is a binary matrix that contains the position information of trigger
T, which means M and T have the same size as the private samples
xp. Following [18, 59], we inject the trigger into x, by:

P(xp,T) =(1=M)oxp+MoT,xp € Dp,
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where o denotes the element-wise product. Therefore, given the
trigger T, we can generate the verification dataset as:

Dy = {xv|xv = P(xp, T),Xp € Z)p}.

Here we define three loss functions, i.e., correlated loss Lcorr,
uncorrelated loss Lyncorr, and embedding match loss L, 4:cn to
achieve three goals. Our first goal is to let the decoded vectors
transformed from the verification dataset D, to be similar to the
secret vector sk, and we define correlated loss function as:

— Yy~ 0, sim(sky, sk)
| Dol ’

where sim(-, -) is a similarity function. If not otherwise specified, we
use cosine similarity as the similarity function. The goal of Lcorr
is to train an encoder and an decoder together to transform x into
sk}, where sk, is correlated with sk. The more similar sk}, and sk
are, the smaller L., will be.

Secondly, given a clean dataset O and an encoder E, the decoder
G transforms embeddings to the orthogonal direction of sk for
uncorrelated samples x € D. Therefore, we could get another loss
function, uncorrelated loss function, as:

e~ sim(sky, sk)
DI

Finally, we here define an embedding match loss function to match
the embeddings generated from two encoders E’ and E”’:

— Xy~ Sim(E’(x), E” (x))
1D

SSLGuard leverages L, 4:ch to maintain the utility of the water-
marked encoder and simulate the model stealing attacks.

Lcorr(DvaE) = (2)

Luncorr(Ds E) = ( )2- (3)

Lmatch(DsE/)EN) = 4)

4.3 Watermark Injection

As shown in Figure 3, SSLGuard adopts three encoders: a clean
encoder F(x;0), a watermarked encoder F.(x; 6,,) and a shadow
encoder F;(x; 0s). Meanwhile, SSLGuard also uses three datasets: a
target dataset Dy, a shadow dataset D, and a verification dataset
Dy. In the following part, we will introduce our loss functions for
each module.

Shadow Encoder. For the shadow encoder, its task is to mimic
the model stealing attacks. Here we use Ds to simulate the query
process. The loss function of the shadow encoder is:

Ls = Lrnarcn(Ds, Fi, Fs). (5)
Trigger and Decoder. Given a verification dataset, we aim to
optimize a trigger T and a decoder G to extract sk from both the
watermarked encoder and the shadow encoder, but not the clean
encoder. The corresponding loss can be defined as:

L1 = Luncorr(Dvs F) + -CCOI‘I‘(DUs F*) + ‘Lcorr(DU, Fs)~ (6)

Besides, for the clean encoder F, watermarked encoder Fs, and
the shadow encoder Fj, the decoder should not map the decoded
keys closely to sk from the target dataset, the loss to achieve this
goal can be defined as:

-£2 = Luncarr(@ts F) + Luncarr(Dt, F*) + Luncorr(Dt» FS)- (7)
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Given the above losses, the final loss function for trigger and
decoder can be defined as:

Lrp=L1+L;. ®)

Watermarked Encoder. For the watermarked encoder, we want
it to keep the utility of the clean encoder. Therefore, for the samples
from Dy, we force the embeddings from F and F; to become similar
through £,,,,;ch- The loss L3 can be defined as:

L3 = Lnaten(De, F, Fy). )

Meanwhile, the decoder G should successfully extract sk from
the verification dataset D, instead of the target dataset D;. The
corresponding loss £; to achieve this goal is defined as:

Ly= Luncorr(Dt,F*) +~£corr(Dva F*)~ (10)
The final loss function for the watermarked encoder is:
Lw=Ls+ Ly (11)

Optimization Problem. After designing all loss functions, we
formulate SSLGuard as an optimization problem. Concretely, we
update the parameters as follows:

0s < Optimizer (6, Vgsls, ns),
T,G « Optimizer(T, G, V7.6 LD, 1TD): (12)
0+ < Optimizer(0y,, Vg L, w),

where ns, nTp, and 1,, are learning rates of shadow encoder, wa-
termarked encoder, trigger, and decoder, respectively. We note that
we update 0s, T, G, and 0,, sequentially in one iteration, and we
stop the optimization until the iteration reaches the max iteration
number.

5 EVALUATION
5.1 Experimental Setup

Datasets. We use the following 7 datasets to conduct our experi-
ments.

e ImageNet [46]. The ImageNet dataset contains 1.2 million
training images distributed in 1,000 classes. Each image has
size 224 X 224 X 3.

e CIFAR-10 [3] The CIFAR-10 dataset has 60, 000 images in
10 classes. Among them, there are 50, 000 images for training
and 10,000 images for testing. The size of each image is
32X32X3.

e CIFAR-100 [3]. Similar to CIFAR-10, The CIFAR-100 dataset
contains 60, 000 images with size 32 X 32 X 3 in 100 classes,
and there are 500 training images and 100 testing images in
each class.

e STL-10 [16]. The STL-10 dataset consists of 5,000 training
images and 8, 000 testing images in 10 classes. Besides, it also
contains 100, 000 unlabeled images. Note that the images on
STL-10 are acquired from labeled images on ImageNet.? The
size of each image is 96 X 96 X 3.

o GTSRB [52]. German Traffic Sign Recognition Benchmark
(GTSRB) contains 39, 209 training images and 12, 630 testing
images. It contains 43-category traffic signs.

Zhttps://cs.stanford.edu/~acoates/stl10/
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e MNIST [4]. MNIST is a handwritten digits dataset that con-
tains 60,000 training images and 10,000 testing images in 10
classes. Each image has size 28 X 28 X 1.

e FashionMNIST [58]. FashionMNIST (F-MNIST) is a Za-
lando’s article image dataset that has 10 classes. It has 60,000
training images and 10,000 testing images. Each sample is a
grayscale image with size 28 X 28 X 1.

We resize images of all datasets to 224X 224X 3 in our experiments.
We use ImageNet as the pre-training dataset; STL-10, CIFAR-10, F-
MNIST, and MNIST as the downstream datasets; and STL-10, CIFAR-
10, CIFAR-100, and GTSRB as the query dataset (to launch model
stealing attacks). Note that for the STL-10 dataset, we randomly split
the unlabeled samples (100,000) of it into two parts (each containing
50,000 samples). We consider the first part as the unlabeled STL-
10 dataset and the second part as the same distribution unlabeled
STL-10 dataset which is denoted as STL-10 (s).

Pre-trained Encoder. In our experiments, we adopt real-world
contrastive learning pre-trained encoders as the victim encoders.
Concretely, we download the checkpoints of the encoders from
the official website (i.e., SimCLR® and MoCo v2%) or the public
platform (i.e., BYOL?). All the encoders are ResNet-50 pre-trained
on ImageNet.

Downstream Classifier. We use a 3-layer MLP as the downstream
classifier with 512 and 256 neurons in its hidden layer. For each
downstream task, we freeze the parameters of the pre-trained en-
coders and train the downstream classifier for 20 epochs using
Adam optimizer [31] with 0.005 learning rate.

SSLGuard. We reload the clean encoder and fine-tune it to be the
watermarked encoder. Note that we freeze the weights in batch
normalization layers following the settings by Jia et al. [30]. We
consider the unlabeled STL-10 dataset (with only 50,000 images as
mentioned above) as both Ds and D, and adopt a ResNet-50 as
the shadow encoder’s architecture. We sample 100 images from
5 random classes on ImageNet as our Dj,. Note that each class
contains 20 images and the Dy for watermarking SimCLR, MoCo v2,
and BYOL are non-overlapping. For each sample in D, 35% space
will be patterned by the trigger. We leverage the SGD optimizer
with 0.01 learning rate to train both the watermarked encoder and
shadow encoder for 50 epochs. The batch size in our experiment is
8. The dimension of sk is 256. For the trigger, we randomly generate
a 224 X 224 X 3 tensor from a uniform distribution in [0, 1] as the
initial trigger. We use a 3-layer MLP as the decoder G. The numbers
of G’s neurons are 512, 256, and 256, respectively. We use the SGD
optimizer with 0.005 learning rate to update both the decoder and
the trigger.

5.2 Clean Downstream Accuracy

Given three clean SSL pre-trained encoders (i.e., pre-trained by
SimCLR, MoCo v2, and BYOL on ImageNet), we first measure their
downstream accuracy, denoted as clean downstream accuracy (CDA),
for different tasks. We consider 4 downstream classification tasks,
i.e., STL-10, CIFAR-10, MNIST, and F-MNIST. The CDA are shown in
Table 2. We observe that the SSL pre-trained encoders can achieve

Shttps://github.com/google-research/simelr
*https://github.com/facebookresearch/moco
Shttps://github.com/yaox12/BYOL-PyTorch
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remarkable performance on different downstream tasks, which
means the SSL pre-trained encoders can learn high-level semantic
information from one task (i.e., ImageNet), and the informative
embeddings can generalize to other tasks (i.e., STL-10 and CIFAR-
10). Meanwhile, the cost of pre-training SSL encoders is expensive
(see Table 3), such observation further demonstrates the necessity
of protecting the copyright of the SSL pre-trained encoders. Note
that we adopt CDA as our baseline accuracy. Later we measure an
encoder’s performance by comparing its DA with CDA.

Table 2: Clean downstream accuracy (CDA).

Downstream Task ‘ SimCLR MoCov2 BYOL
STL-10 0.783 0.889 0.948
CIFAR-10 0.766 0.712 0.855
MNIST 0.974 0.940 0.974
F-MNIST 0.874 0.852 0.894

5.3 Model Stealing Attacks

Since the SSL pre-trained encoders (clean encoders) are powerful,
we then evaluate whether they are vulnerable to model stealing
attacks. To build a surrogate encoder, we consider three key infor-
mation, i.e., the surrogate encoder’s architecture, the distribution
of the query dataset, and the similarity function used to “copy” the
victim encoder.

Surrogate Encoder’s Architecture. We first investigate the im-
pact of the surrogate encoder’s architecture. Note that here we
adopt the unlabeled STL-10 dataset (with 50,000 unlabeled sam-
ples) as the query dataset and cosine similarity as the similarity
function to measure the difference between the victim and surro-
gate encoders’ embeddings. Since the architecture of the victim
encoder can be non-public, the adversaries may try different surro-
gate encoder architectures to perform the model stealing attacks.
Concretely, we assume the adversaries may leverage ResNet-18,
ResNet-34, ResNet-50, or ResNet-101 as the surrogate encoder’s
architecture. If the output dimension is different from ResNet-50
(the architecture of the victim encoder), e.g., ResNet-18/ResNet-34
outputs 512-dimensional embeddings, we leverage an extra linear
layer to transform them into 2048-dimension. The DA of surro-
gate encoders is summarized in Figure 4. A general trend is that
the deeper the surrogate encoder’s architecture, the better perfor-
mance it can achieve on the downstream tasks. For instance, for
SimCLR (Figure 4a), the DA on STL-10 and CIFAR-10 are 0.728
and 0.657 when the surrogate encoder’s architecture is ResNet-18,
while the DA increases to 0.759 and 0.697 when the surrogate en-
coder’s architecture is changed to ResNet-50. This may be because
a deeper model architecture can provide a wider parameter space
and greater representation ability. Therefore, in general, deeper sur-
rogate encoder’s architectures can better “copy” the functionality
from victim encoders. Note that in the following experiments, the
adversary uses ResNet-50 as the surrogate encoder’s architecture
by default as it has comparable performance to ResNet-101 while
requiring fewer resources.
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Distribution of the Query Dataset. Secondly, we evaluate the
impact of the query dataset’s distribution. In the real-world sce-
nario, the adversary may or may not have the query dataset that
is from the same distribution as the victim encoder’s pre-training
dataset. Here the adversary leverages ResNet-50 as the surrogate
model’s architecture and cosine similarity as the similarity function.
Regarding the query dataset, the adversary may leverage the train-
ing dataset of CIFAR-10, CIFAR-100, and GTSRB and the unlabeled
dataset of STL-10 to perform the attacks. The results are shown in
Figure 5. First, we observe that the model stealing attack is more
effective with querying by the same distribution dataset as the pre-
training dataset. For instance, given the victim model trained by
SimCLR (Figure 5a), when the downstream task is STL-10 classi-
fication, the DA for the surrogate encoders are 0.759, 0.646, 0.651,
and 0.538 when the query dataset is STL-10, CIFAR-10, CIFAR-100,
and GTSRB, respectively. This demonstrates that the same distribu-
tion query dataset can better steal the functionality of the victim
encoder.

Another observation is that the distribution of the surrogate
dataset may also influence DA on different tasks. For instance,
given the victim model trained by BYOL (Figure 5c), when the
downstream task is CIFAR-10 classification, the DA is 0.814 with
CIFAR-10 as the query dataset, while only 0.769 with STL-10 as
the query dataset. However, when the downstream task is STL-10
classification, the DA is 0.799 with CIFAR-10 as the query dataset
but increases to 0.946 with STL-10 as the query dataset. Therefore,
if the adversary is aware of the downstream task, they can construct
a query dataset that is close to the downstream task to improve the
stealing performance.

Similarity Function. Finally, we investigate the effect of sim-
ilarity functions used in model stealing attacks. Besides cosine
similarity, the adversary can also use mean absolute error (MAE)
and mean square error (MSE) to match the victim encoder’s embed-
dings. Here we assume that the adversary leverages ResNet-50 as
the surrogate model’s architecture and STL-10 as the query dataset.
The results are shown in Figure 6. We can see that cosine similarity
outperforms MAE and MSE in most settings. For instance, given the
victim model trained by MoCo v2 (Figure 6b), the DA are all below
0.5 when using MAE and MSE. This can be credited to the normal-
ization effect of cosine similarity, which helps to better learn the
embeddings [21]. This indicates that cosine similarity may better
facilitate the stealing process.

Monetary Cost. We compare the monetary costs of pre-training
an SSL encoder from scratch and stealing an SSL encoder. We first
measure the training cost of the encoders. To pre-train a ResNet-
50 encoder, SIimCLR needs 60 hours with 32 TPU v3s, MoCo v2
uses 212 hours with 8 NVIDIA V100 GPUs, and BYOL takes 72
hours with 32 NVIDIA V100 GPUs (the training information is
from the official or open-source implementation as mentioned in
Section 5.1). The cost of model stealing contains two parts: querying
the victim encoders and training the surrogate encoders locally. We
use the GPU price from Google cloud® to calculate the price for
pre-training (i.e., We run our experiments on one NVIDIA A100
GPU whose price is $2.934 per hour). Meanwhile, we refer to the

®https://cloud.google.com/compute/gpus-pricing
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Figure 6: The performance of surrogate encoders trained with different loss functions.

Table 3: Monetary Cost ($). Here Res denotes ResNet.

Pre-trainin, Stealing
€ | Res-18 Res-3¢ Res-50 Res-101
SimCLR | 1,920.00 | 5824 6110 6667  74.50
MoCov2 | 4,206.08 | 5813 61.09 6655 7437
BYOL 5713.92 | 58.16 60.84 6428  72.49

querying price, i.e., $1 per 1,000 queries, from AWS.” We adopt
the unlabeled STL-10 dataset (50,000 samples), cosine similarity,
and different architectures to launch model stealing attacks. The
monetary costs are shown in Table 3. We observe that the cost of
stealing the pre-trained encoder is much smaller than pre-training
it from scratch. For instance, pre-trains a BYOL ResNet-50 encoder
takes $5,713.92 while stealing it with a ResNet-101 encoder only
takes $72.49. This indicates that an adversary can “copy” the victim
encoder with much less cost.

"https://aws.amazon.com/rekognition/pricing
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5.4 SSLGuard

In this section, we adopt SSLGuard to inject the watermarks into the
clean encoders pre-trained by SimCLR, MoCo v2, and BYOL. We aim
to validate four properties of SSLGuard, i.e., effectiveness, utility,
undetectability, and efficiency. We will discuss the robustness of
SSLGuard separately in Section 5.5.

Table 4: Effectiveness.

Encoder | SimCLR  MoCo v2 BYOL

F 0.00 0.00 0.00
Fi 1.00 1.00 1.00
Fg 1.00 1.00 1.00

Effectiveness. We first evaluate the effectiveness of SSLGuard.
Concretely, we check whether the model owner can extract the
watermark from the watermarked encoders. Ideally, the watermark
should be successfully extracted from the watermarked encoder F;
and shadow encoder Fs, but not the clean encoder F. We use the
generated key-tuple x to measure the watermark rate (WR) for F,
F, and Fs on three SSL algorithms. As shown in Table 4, the WR of


https://aws.amazon.com/rekognition/pricing
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Figure 7: The t-SNE visualizations of features output from

Fbyol and Ff Yol when we input 800 samples in 10 classes ran-
domly chosen from the STL-10 training dataset. Each point
represents an embedding. Each color represents one class.

F, and F; are all 1.00, which means encoder F, and Fs both contain
the information of 9, and sk. Meanwhile, the WR of F is 0.00. This
means SSLGuard is generic and does not judge a clean encoder to
be a watermarked encoder.

Fidelity. One of the initial intentions of SSLGuard is to maintain
the utility of the original downstream task. To verify its fidelity,
we first take BYOL as an example and visualize embeddings out-
put from F?¥! (the clean encoder pre-trained by BYOL) and F*b yol
using t-Distributed Neighbor Embedding (t-SNE) [55], which is

depicted in Figure 7. We observe that the t-SNE results of F?¥0!

and Ff Yol are almost identical and the embeddings are successfully
separated by both encoders. This demonstrates that watermarked
encoder trained by SSLGuard can faithfully reproduce the embed-
dings generated from the clean encoder. Also, we train downstream
classifiers by using three watermarked encoders FSi™¢lr Frmoco ang

FP%°! o1 STL-10, CIFAR-10, F-MNIST, and MNIST. Table 5 shows
the DA in different scenarios. We observe that the DA of the water-
marked encoders are almost the same as that of the clean encoders.
For instance, compared to FS?¢!" the DA for FS/™¢I" only drops
up to 0.009 from CDA. The evaluation shows that SSLGuard does

not sacrifice the utility of the clean encoders.

Table 5: Fidelity (DA). The value in the parenthesis denotes
the difference between CDA.

Task ‘ Fsimclr Fmoco Fby(’l

% * *
STL-10 0.781 (-0.002)  0.888 (-0.001)  0.940 (-0.008)
CIFAR-10 | 0.765 (-0.001) 0.701 (-0.011)  0.857 (+0.002)
MNIST 0.965 (-0.009)  0.956 (+0.016) 0.966 (+0.002)
F-MNIST | 0.878 (+0.004) 0.845 (-0.007) 0.894 (+0.000)

Undetectability. We then check if the watermark can be extracted
by a no-matching key-tuple. Through SSLGuard, we generate three
key-tuples: xSimelr cmoco and 1 cbyol e yse one of the key-tuples
to verify other watermarked encoders, such as using x5l to
judge F*°¢°. As shown in Table 6, we see that the WR are all 0.00
in no-match pairs, which means we cannot use a non-matching x
to verify a watermarked encoder.

588

Tianshuo Cong, Xinlei He, & Yang Zhang

Table 6: Undetectability.

Key-tuple F:imclr Fimoco Ff yol
xsimelr 1.00 0.00  0.00
yrmoco 0.00 1.00 0.0
wbyol 0.00 0.00  1.00

Efficiency. SSLGuard injects watermark into SimCLR, MoCo v2,
and BYOL using 17.5hrs, 17.36hrs, and 10.70hrs, respectively, which
are only 29.17%, 8.19%, and 14.86% of the time cost to pre-train
SSL encoders, and the watermark extraction time is only 1.51s,
2.08s, and 1.82s, respectively. Note also that we use only a single
GPU (A100) in the watermark injection process, which is much
less than the requirement for pre-training the SSL encoders. This
demonstrates that SSLGuard can inject and extract watermarks
efficiently.

5.5 Robustness

We now quantify the robustness of SSLGuard. Concretely, we eval-
uate SSLGuard against model stealing and the following watermark
removal attacks: Input preprocessing, output perturbing, and model
modification. For instance, the adversary can add noise to the input
samples or output embeddings. Also, the adversary can modify the
parameters of the encoder by overwriting, pruning, and fine-tuning.
Since watermark removal attacks may affect the performance of the
encoders, and the adversary aims to "clean" the encoder but keep
its functionality, we measure DA and WR simultaneously of these
surrogate encoders. We note that the victim encoders are the wa-
termarked encoders, and we leverage SimCLR, MoCo, and BYOL to

denote Fsimelr | pmoco 4pq Ff Y0l i1 this subsection. Regarding the
downstream accuracy, we only show the results on BYOL (SimCLR
and MoCo have similar trends).

5.5.1 Input Preprocessing. Here we consider that the adversary
may add i.i.d.Gaussian noise to each input image by x” = x + ¢; -
N (0,1). We evaluate DA on four downstream tasks and WR when
we use different ;. The results of WR are shown in Figure 8a and
DA are shown in Figure 9a. We first observe that DA drops as €;
increases. For instance, the DA on CIFAR-10 drops from 0.932 to
0.865 when €1 increases from 0.05 to 0.15. On the other hand, the
WR are all 1.00 for different e on SimCLR, MoCo, and BYOL, re-
spectively. This may be because when we inject the trigger into D,
the distribution of Dy, is too special, so our watermarked encoder
can remember these special samples, which is robust to the input
noising attacks.

5.5.2  Output Perturbing. The adversary can also add some pertur-
bations to the embeddings before returning them as the outputs.
Here we consider two kinds of perturbations, i.e., random noising
and truncation.

Output Noising. The adversary may return the perturbed em-
beddings by adding i.i.d.Gaussian noise as h’ = h + €3 - N(0, 1),
where h is the original embedding, b’ is the perturbed embedding,
and e is a hyper-parameter to control the noise level. Then, we
evaluate DA and WR on different e3. From Figure 9b, we observe
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Figure 9: The DA on different watermark removal attacks. The victim encoder is BYOL.

that DA decreases when €3 increases. For instance, when €, in-
creases from 0.05 to 0.15, DA on STL-10 drops from 0.940 to 0.905.
However, the WR remains above 0.50 for all watermarked encoders
(see Figure 8b), which means when we feed the embeddings with
noise into the decoders, the secret vector can still be successfully
extracted. Therefore, the adversaries cannot remove the watermark
even if they add random noise to the embeddings at the expense of
decreasing the model’s performance.

Truncation. The adversary may decrease the precision of the
embeddings by leveraging truncation. For instance, the adversary
retains k decimal places for each value in the embeddings, e.g., if
k = 3, the adversary modifies the value 1.2368 to 1.236, and changes
1.2368 to 1 when k = 0. Figure 8c and Figure 9c shows WR and
DA under different k. We observe that DA has a sharp drop when
k decreases from 1 to 0. Meanwhile, WR are all above 0.5 instead
of MoCo, i.e., WR of MoCo drops to 0.00 when k = 0, but the DA
on STL-10 is only 0.10. Therefore, adversaries cannot remove the
watermark from the encoder while remaining its functionality.

5.5.3  Model Modification. When adversaries have white-box ac-
cess to the encoder, they can try to remove the watermark by mod-
ifying the encoder’s parameters. In this section, we consider three
methods of model modification: watermark overwriting, model
pruning, and fine-tuning.

Overwriting. The adversary can also leverage SSLGuard to inject
a new watermark into an SSL encoder whether or not they know
that the encoder has already been injected with a watermark. The
adversary aims to generate a new watermarked encoder F; from
F, with a different key-tuple. We want to confirm if our original
watermark can remain in F, as well. For each F/, we measure the
DA on different downstream tasks and the WR of the original key-
tuple. The results are shown in Table 7. We observe that although
we overwrite the watermarked encoder with a new key-tuple to
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generate a new encoder, the original watermark is still preserved,
i.e., the WR of the original watermark in the new encoder is 1.00.
This indicates that the original watermark can still be preserved
even if the adversary overwrites a new watermark into the model.

Table 7: Overwriting.

| SiImCLR  MoCo v2 BYOL

STL-10 0.785 0.888 0.954

DA CIFAR-10 0.765 0.685 0.863
MNIST 0.962 0.955 0.977
F-MNIST 0.885 0.837 0.905
Overwriting key 1.00 1.00 0.98
Original key 1.00 1.00 1.00

Pruning. Pruning is an effective technology for model compres-
sion [62]. It is also considered a watermark removal attack since
many neurons may be disabled which reduces the effectiveness
of the watermark [40]. In this part, we leverage global and local
unstructured pruning methods to the watermarked encoders. In
the global pruning setting, we set r fraction of weights in the con-
volutional layers which have the smallest absolute values in all
layers to 0. Compared to global pruning, i.e., putting together all
the connections across different layers and comparing them, local
pruning aims to prune a proportion of connections with the small-
est absolute values in the same layer. We show the WR and DA in
the first two sub-figures of Figure 10 and Figure 11, respectively.
We observe that DA and WR drop a little as the ratio increases in
global pruning. However, for local pruning, there is a larger down-
ward trend in DA. For instance, DA is 0.954 when r = 0.1 and 0.871
when r = 0.5, this is because local pruning cannot preserve the
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Figure 10: The WR of pruned and fine-tuned encoders.
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Figure 11: The DA of pruned and fine-tuned encoders. The victim encoder is BYOL.

global information in the model properly. In general, most of the
WR are 1.0, which means SSLGuard is robust to different pruning
settings. We also notice a special case here, i.e., on BYOL, when
r = 0.4, the WR is 0.50. This is the worst case in our experiment,
which demonstrates that we use watermark verification threshold
th,, = 0.5 in SSLGuard is reasonable. Also, note that for all clean
encoders we evaluate in this paper, the WR is 0. This means the
th,, can be set to a smaller value to better verify the watermarked
encoder as we discussed in Section 4.1.

Fine-tuning. After pruning, the adversary can fine-tune the sur-
rogate encoders under the victim encoder’s supervision, which
is following the setting in [28]. This process is also called fine-
pruning [38]. The goal of fine-tuning is to regain DA’s drop. We
fine-tune all the weights of the pruned encoders (global and local)
by the MSE loss function. We note that we freeze the BatchNorm
layers of the pruned encoders due to reducing inaccurate batch
statistics estimation caused by a small batchsize [57]. The WR are
shown in Figure 10c and Figure 10d, and the DA are shown in Fig-
ure 11c and Figure 11d. We observe that fine-tuning can recover lost
information from the victim encoder. For instance, when r = 0.3 in
the local pruned model, DA on STL-10 is 0.917. After fine-tuning
the pruned model, DA comes to 0.954. Meanwhile, WR increases as
DA recovers. This means SSLGuard is robust to fine-tuning.

5.5.4 Model Stealing. We then quantify the robustness of SSL-
Guard through the lens of model stealing attacks. Note that we
only consider the most powerful surrogate encoder’s architectures
and most effective query datasets. Concretely, based on the evalua-
tion in Section 5.2, we consider ResNet-50 and ResNet-101 as the
surrogate encoder’s architectures and STL-10 as the query dataset.
We name the three attacks Steal-1, Steal-2, and Steal-3. The
details of each attack are shown in Table 8.

The WR and DA for different attacks are shown in Table 9. We
observe that although the model stealing attack is effective against
the watermarked encoder, we can still verify the ownership of the
surrogate model as the WR is also high. For instance, for Steal-2
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Table 8: Details of different model stealing attacks.

Attacks ‘Query dataset Architecture Loss function

Steal-1 STL-10 ResNet-50 Cosine
Steal-2 STL-10 ResNet-101 Cosine
Steal-3 STL-10 (s) ResNet-50 Cosine

against the watermarked encoder pre-trained by BYOL, the DA
15 0.937 and 0.815 on STL-10 and CIFAR-10, while the WR is 1.00,
which indicates that the watermark injected by SSLGuard can still
preserve in the surrogate encoder stolen by the adversary. We also
have similar observations on Steal-1 and Steal-3, which demon-
strate the robustness of SSLGuard under model stealing attacks.

6 DISCUSSION

The Necessity of the Shadow Encoder. The reason why SSL-
Guard can extract watermarks from the surrogate encoder is that it
locally simulates a model stealing process by using a shadow dataset
and shadow encoder. In this part, we aim to demonstrate the need
for such a design. We discard the shadow encoder and inject the
watermark into a clean pre-trained encoder on SimCLR, MoCo v2,
and BYOL. Then we get the corresponding key-tuples. The key-
tuples can extract watermarks successfully. However, when We
mount Steal-1 to the watermarked encoders to generate three
surrogate encoders (i.e., gsimelr gmoco a4 gb y"l), the WR are all
0.00, which means the watermark may not be verified. Meanwhile,
DA for §P%°! are 0.945, 0.735, 0.843, and 0.926 on STL-10, CIFAR-10,
F-MNIST, and MNIST, respectively. This indicates that the adver-
sary can successfully steal the victim encoder as the DA for the
surrogate encoder are close to the target encoder. In conclusion,
SSLGuard cannot work well without the shadow encoder as the
adversary can steal a surrogate encoder with high utility while by-
passing the watermark verification process. Therefore, the shadow
encoder is crucial for defending against model stealing attacks.
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Table 9: The DA and WR of model stealing attacks against
the watermarked encoders.

Attacks | Metric | SimCLR  MoCo  BYOL
STL-10 0.721  0.890  0.938

pa  CIFAR-10 | 0.685  0.628 0791

Steal-1 F-MNIST | 0.832  0.809 0.830
MNIST 0.928  0.923  0.915

WR 1.00 0.96 1.00

STL-10 0.727  0.871  0.937

pa CIFAR-10 | 0677 0628  0.815

Steal-2 F-MNIST | 0.840  0.827 0.865
MNIST 0.935 0919  0.961

WR 0.99 0.90 1.00

STL-10 0.732  0.874 0.923

pa  CIFAR-10 | 0677 0658 0784

Steal-3 F-MNIST | 0.827  0.823 0.851
MNIST 0.932  0.940 0.922

WR 1.00 0.95 0.98

The Choice of Mask. In our experiments, we set the covering
space of the mask as 35%. We also leverage different masks M, i.e.,
5% and 50% to inject watermark into BYOL, then we mount Steal-1
to the watermarked encoders, the WR are 0.99 and 1.00. The results
show that the WR is similar when we leverage different covering
spaces of the masks, which indicates that SSLGuard is effective
under different masks.

Extension to Other Types of Datasets. In this paper, we only
focus on encoders pre-trained on image datasets. To extend SSL-
Guard into encoders pre-trained on other types of datasets such as
texts or graphs [19, 60], the main challenge is to define a suitable
trigger pattern in the language or graph domain. Then we can apply
a similar method to watermark those models. We leave it as our
future work to further explore the effectiveness of SSLGuard on
other domains such as texts or graphs.

7 RELATED WORK

Privacy and Security for SSL. There have been more and more
studies on the privacy and security of self-supervised learning.
Jia et al. [29] sum up 10 security and privacy problems for SSL.
Among them, only a small part has been studied. Liu et al. [37]
study MIA against contrastive learning-based pre-train encoder.
Concretely, Liu et al. [37] leverage data augmentations over the
original samples to generate multiple augmented views. Then, the
authors measure the similarities among the embeddings of the
augmented samples. The intuition is that, if the sample is a member,
then the similarities should be higher than a non-member. He and
Zhang [26] perform the first privacy analysis of contrastive learning.
Concretely, the authors observe that the contrastive models are less
vulnerable to membership inference attacks, while more vulnerable
to attribute inference attacks. The reason is that contrastive models
are more generalized with less overfitting level, which leads to
fewer membership inference risks, but the representations learned
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by contrastive learning are more informative, thus leaking more
attribute information. Jia et al. [30] propose the first backdoor attack
against SSL pre-trained encoders. By injecting the trigger pattern in
the pre-training process of an encoder that correlated to a specific
downstream task, the backdoored encoder can behave abnormally
for this downstream task. The author further shows that triggers
for multiple tasks can be simultaneously injected into the encoder.

DNNs Copyright Protection. In recent years, several techniques
for DNNs copyright protection have been proposed. Among them,
DNNs watermarking is one of the most representative algorithms.
Jia et al. [28] propose an entangled watermarking algorithm that en-
courages the classifiers to represent training data and watermarks
similarly. The goal of the entanglement is to force the adversary to
learn the knowledge of the watermarks when he steals the model.
DNN fingerprinting is another protection method. Unlike water-
marking, the goal of fingerprinting is to extract a specific property
from the model. Cao et al. [8] introduce a fingerprinting extraction
algorithm, namely IPGuard. IPGuard regards the data points near
the classification boundary as the model’s fingerprint. If a suspect
classifier predicts the same labels for these points, then it will be
judged as a surrogate classifier. Chen et al. [12] propose a testing
framework for supervised learning models. They propose six met-
rics to measure whether a suspect model is a copy of the victim
model. Among these metrics, four of them need white-box access,
and black-box access is enough for the rest.

8 CONCLUSION

In this paper, we first quantify the copyright breaching threats of
SSL pre-trained encoders through the lens of model stealing attacks.
We empirically show that the SSL pre-trained encoders are highly
vulnerable to model stealing attacks. This is because the rich in-
formation in the embeddings can be leveraged to better capture
the behavior of the victim encoder. To protect the copyright of the
SSL pre-trained encoder, we propose SSLGuard, a robust black-box
watermarking scheme for the SSL pre-trained encoders. Concretely,
given a secret vector, SSLGuard injects a watermark into a clean pre-
trained encoder and outputs a watermarked version. The shadow
training technique is also applied to preserve the watermark under
potential model stealing attacks. Extensive evaluations show that
SSLGuard is effective in embedding and extracting watermarks and
robust against model stealing and different types of watermark re-
moval attacks such as input noising, output perturbing, overwriting,
model pruning, and fine-tuning.
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