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Abstract
Self-supervised learning is an emerging machine learning
(ML) paradigm. Compared to supervised learning which
leverages high-quality labeled datasets to achieve good
performance, self-supervised learning relies on unlabeled
datasets to pre-train powerful encoders which can then be
treated as feature extractors for various downstream tasks.
The huge amount of data and computational resources con-
sumption makes the encoders themselves become valuable
intellectual property of the model owner. Recent research has
shown that the ML model’s copyright is threatened by model
stealing attacks, which aim to train a surrogate model to
mimic the behavior of a given model. We empirically show
that pre-trained encoders are highly vulnerable to model
stealing attacks. However, most of the current efforts of
copyright protection algorithms such as watermarking con-
centrate on classifiers. Meanwhile, the intrinsic challenges of
pre-trained encoder’s copyright protection remain largely un-
studied. We fill the gap by proposing SSLGuard, the first wa-
termarking algorithm for pre-trained encoders. Given a clean
pre-trained encoder, SSLGuard injects a watermark into it
and outputs a watermarked version. The shadow training
technique is also applied to preserve the watermark under
potential model stealing attacks. Our extensive evaluation
shows that SSLGuard is effective in watermark injection and
verification, and is robust against model stealing and other
watermark removal attacks such as input noising, output per-
turbing, overwriting, model pruning, and fine-tuning.1

1 Introduction
Deep learning (DL), in particular supervised deep learn-
ing models, has gained tremendous success during the past
decade, and the development of supervised learning relies on
a large amount of high-quality labeled data. However, high-
quality data is often difficult to collect and the cost of label-
ing is expensive. Self-supervised learning (SSL) is proposed
to resolve restrictions from lacking labeled data by gener-
ating “labels” from the unlabeled dataset (called pre-training
dataset), and use the derived “labels” to pre-train an encoder.
With huge amounts of unlabeled data and advanced model
architectures, one can train a powerful encoder to learn infor-
mative representations (also referred to as embeddings) from

1Our code is available at https://github.com/tianshuocong/SSLGuard
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Figure 1: An illustration of deploying self-supervised learning
pre-trained encoders as a service. The legitimate user aims to
train downstream classifiers while the adversary tries to gener-
ate a surrogate encoder.

the input data, which can be further leveraged as a feature ex-
tractor to train a downstream classifier. Such encoders pre-
trained by SSL show great promise in various downstream
tasks. For instance, on the ImageNet dataset [43], Chen et
al. [13] show that, by using SimCLR pre-trained with Im-
ageNet (unlabeled), the downstream classifier can achieve
85.8% top-5 accuracy with only 1% labels, which outper-
forms a supervised AlexNet but uses 100× fewer labels. He
et al. [22] show that self-supervised learning can surpass su-
pervised learning under seven downstream tasks including
segmentation and detection.

Compared to the supervised learning-based classifier
which only suits a specific classification task, the SSL pre-
trained encoder can achieve remarkable performance on dif-
ferent downstream tasks. However, the data collection and
training process of SSL are also expensive as it benefits from
larger datasets and more powerful computing devices. For
instance, the performance of MoCo [22], one popular im-
age encoder, pre-trained with the Instagram-1B dataset (∼ 1
billion images) outperforms that of the encoder pre-trained
with ImageNet-1M dataset (1.28 million images). SimCLR
requires 32 TPU v3 cores to train a ResNet-50 encoder due to
the large batch size setting (i.e., 4096) [13]. The cost to train
a powerful encoder by SSL is usually prohibitive for individ-
uals. Therefore, the high-performance encoders are usually
pre-trained by leading AI companies with sufficient comput-
ing resources, and shared via cloud platforms for commercial
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usage. Nowadays, Encoder-as-a-Service (EaaS) [1, 2] is be-
coming popular. For instance, Clarifai [2] provides the image
embedding model to generate representations of images for
different downstream tasks and OpenAI provides access to
GPT-3 [6] which can be considered as a powerful encoder for
a variety of natural language processing (NLP) downstream
tasks, such as code generation, style transfer, etc.

Once deployed on the cloud platform, the pre-trained en-
coders are not only accessible to legitimate users but also
threatened by potential adversaries. As illustrated in Fig-
ure 1, for the legitimate user, the pre-trained encoder is used
to train a downstream classifier. On the other hand, an ad-
versary may perform model stealing attacks [30, 39, 46, 50]
which aim to learn a surrogate encoder that has similar func-
tionality as the pre-trained encoder published online. Such
attacks may not only compromise the intellectual property of
the service provider but also serve as a stepping stone for fur-
ther attacks such as membership inference attacks [34,45,47]
(i.e., mount membership inference attacks offline by using
surrogate encoders), backdoor attacks [28] (i.e., publish an-
other backdoored encoder), and adversarial examples [40].
The security and privacy of SSL encoders are threatened by
these attacks, which call for effective defenses.

As one major technique to protect the copyright of a given
model, model watermarking [26, 32] inserts a secret water-
mark pattern into the model. The ownership of the model can
then be claimed if similar or exactly the same pattern is suc-
cessfully extracted from the model. Recent studies on model
watermarking mainly focus on the classifier that targeted a
specific task [5, 26, 58]. However, compared to watermark-
ing classifiers, watermarking SSL pre-trained encoders may
face several intrinsic challenges. First, model watermarking
against the classifier usually needs to specify a target class
before being executed, while the SSL pre-trained encoder
does not have such information. Second, downstream tasks
for SSL pre-trained encoders are flexible, which challenges
the traditional model watermarking scheme that is only suit-
able for one specific downstream task. Therefore, a new wa-
termarking scheme should be designed to overcome those
challenges to protect the copyright of SSL encoders. To the
best of our knowledge, this has been left largely unstudied.

Our Work. In this paper, we first quantify the copyright
breaching threat against SSL pre-trained encoders through
the lens of model stealing attacks. Then, we introduce SSL-
Guard, the first watermarking algorithm for the SSL pre-
trained encoders to protect their copyrights. Note that in this
work, we consider image encoders only.

For model stealing attacks, we first assume that the ad-
versary only has black-box access to the SSL pre-trained
encoder (i.e., victim encoder). The adversary’s goal is to
build a surrogate encoder to “copy” the functionality of the
victim encoder. We then characterize the adversary’s back-
ground knowledge into two dimensions, i.e., the surrogate
dataset’s distribution and the surrogate encoder’s architec-
ture. Regarding the surrogate dataset which is used to train
the surrogate encoder, we consider the adversary may or
may not know the victim encoder’s pre-training dataset. Re-
garding the surrogate encoder’s architecture, we first assume

that it shares the same architecture as the victim encoder.
Then, we relax this assumption and find that the effective-
ness of model stealing attacks can even increase by leverag-
ing a larger model architecture. We empirically show that the
model stealing attacks against victim encoders achieve re-
markable performance. For instance, given a ResNet-50 en-
coder pre-trained on ImageNet by SimCLR, the ResNet-101
surrogate encoder can achieve 0.944 accuracy on STL-10 and
0.805 accuracy on CIFAR-10, while the accuracy for the vic-
tim encoder is 0.948 on STL-10 and 0.855 on CIFAR-10,
respectively. This is because the rich information hidden in
the embeddings can better help the surrogate encoder mimic
the behavior of the victim encoder. We also show that the
cost of stealing an encoder is much smaller than pre-training
it from scratch, e.g., pre-training the BYOL ResNet-50 en-
coder costs $5,713.92 while stealing it with ResNet-101 only
costs $72.49 (see Table 3 for the detailed comparison). Such
observation emphasizes the underlying threat of jeopardizing
the model owner’s intellectual property and the emergence of
copyright protection.

To protect the copyright of SSL pre-trained encoders, we
propose SSLGuard, a robust black-box watermarking algo-
rithm for SSL pre-trained encoders. Concretely, given a se-
cret vector, the goal of SSLGuard is to inject a watermark
based on the secret vector into a clean SSL pre-trained en-
coder. The output of SSLGuard contains a watermarked en-
coder and a key-tuple. To be specific, the key-tuple consists
of a secret vector, a verification dataset, and a decoder. SSL-
Guard fine-tunes a clean encoder to a watermarked encoder.
The watermarked encoder can preserve the utility of the clean
encoder and map samples in the verification dataset to secret
representations. We further introduce a decoder to transform
these secret representations into the secret vector which may
lie in another space. For other encoders, the decoder only
transforms the representations generated from the verifica-
tion dataset into random vectors. Recent research has shown
that if a watermarked model is stolen, its corresponding wa-
termark usually vanishes [37]. To remedy this situation, SSL-
Guard adopts a shadow dataset and a shadow encoder to lo-
cally simulate the process of model stealing attacks. In the
training process, SSLGuard optimizes a trigger that can be
recognized by both the watermarked encoder and the shadow
encoder. We later show in Section 5 that such a design can
strongly preserve the watermark even in the surrogate en-
coder stolen by the adversary.

Empirical evaluations over 7 datasets (i.e., ImageNet,
CIFAR-10, CIFAR-100, STL-10, GTSRB, MNIST, and
FashionMNIST) and 3 encoder pre-training algorithms (i.e.,
SimCLR, MoCo v2, and BYOL) show that SSLGuard can
successfully inject/extract the watermark to/from the SSL
pre-trained encoder without sacrificing its performance and
is robust to model stealing attacks. Moreover, we consider
various types of watermark removal attacks including input
preprocessing (noising), output perturbing (noising and trun-
cation), and model modification (overwriting, pruning, and
fine-tuning) to “clean” the model. We empirically show that
SSLGuard is still effective in such a scenario.

In summary, we make the following contributions:
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• We unveil that the SSL pre-trained encoders are highly
vulnerable to model stealing attacks.

• We propose SSLGuard, the first watermarking algo-
rithm against SSL pre-trained encoders, which is able to
protect the intellectual property of published encoders.

• Extensive evaluations show that SSLGuard is effec-
tive in injecting and extracting watermarks and robust
against model stealing and other watermark removal at-
tacks such as input noising, output perturbing, overwrit-
ing, model pruning, and fine-tuning.

2 Background
2.1 Self-supervised Learning
Self-supervised learning is a rising AI paradigm that aims
to train an encoder by a large scale of unlabeled data. A
high-performance pre-trained encoder can be shared into the
public platform as an upstream service. In downstream
tasks, customers can use the embeddings output from the
pre-trained encoder to train their classifiers with limited la-
beled data [13] or even no data [41]. One of the most re-
markable self-supervised learning paradigms is contrastive
learning [13, 15, 21, 22, 41]. In general, encoders are pre-
trained through contrastive losses which calculate the simi-
larities of embeddings in a latent space. In this paper, we
consider three representative contrastive learning algorithms,
i.e., SimCLR [13], MoCo v2 [15], and BYOL [41].

SimCLR [13]. SimCLR is a simple framework for con-
trastive learning. It consists of four components, including
Data augmentation, Base encoder f (·), Projection head g(·)
and Contrastive loss function.

The data augmentation module is used to transform a data
sample x randomly into two augmented views. Specifically,
the augmentations include random cropping, random color
distortions, and random Gaussian blur. If two augmented
views are generated from the same data sample x, we treat
them as a positive pair, otherwise, they are considered as a
negative pair. Positive pairs of x are denoted as x̃i and x̃ j.

Base encoder f (·) extracts feature vectors hi = f (x̃i) from
augmented inputs. Projection head g(·) is a small neural net-
work that maps feature vectors to a latent space where con-
trastive loss is applied. SimCLR uses a multilayer percep-
tron (MLP) as the projection head g(·) to obtain the output
zi = g(hi).

For a set of samples {x̃k} including both positive and neg-
ative pairs, contrastive loss aims to maximize the similarity
between the feature vectors of positive pairs and minimize
those of negative pairs. Given N samples in each mini-batch,
we could get 2N augmented samples. Formally, the loss
function for a positive pair x̃i and x̃ j can be formulated as:

l(i, j) =− log
exp(sim(zi,z j)/τ)

∑
2N
k=1,k 6=i exp(sim(zi,zk)/τ)

,

where sim(·, ·) denotes the cosine similarity function and τ

denotes a temperature parameter. SimCLR jointly trains the

base encoder and projection head by minimizing the final
loss function:

LSimCLR =
1

2N

N

∑
k=1

[l(2k−1,2k)+ l(2k,2k−1)],

where 2k−1 and 2k are the indexes for each positive pair.
Once the model is trained, SimCLR discards the projection

head and keeps the base encoder f (·) only, which serves as
the pre-trained encoder.

MoCo v2 [15]. Momentum Contrast (MoCo) [22] is a fa-
mous contrastive learning algorithm, and MoCo v2 is the
modified version (using projection head and more data aug-
mentations).

MoCo points out that contrastive learning can be regarded
as a dictionary lookup task. The “keys” in the dictionary are
the embeddings output from the encoder. A “query” matches
a key if they are encoded from the same image. MoCo aims
to train an encoder that outputs similar embeddings for a
query and its matching key, and dissimilar embeddings for
others. The dictionary is desirable to be large and consistent,
which contains rich negative images and helps to learn good
representations. MoCo aims to build such a dictionary with
a queue and momentum encoder.

MoCo contains two parts: query encoder fq(x;θq) and
key encoder fk(x;θk). Given a query sample xq, MoCo gets
an encoded query q = fq(xq). For other samples xk, MoCo
builds a dictionary whose keys are {k0,k1, ...}, ki = fk(xk

i ),
i = 0,1, .... The dictionary is a dynamic queue that keeps the
current mini-batch encoded embeddings and discards ones
in the oldest mini-batch. The benefit of using a queue is de-
coupling the dictionary size from the mini-batch size, so the
dictionary size can be set as a hyper-parameter. Assume k+
is the key that q matches, the loss function will be defined as:

LMoCo =− log
exp(q · k+/τ)

∑
K
i=0 exp(q · ki/τ)

.

τ is a temperature hyper-parameter. MoCo trains fq by min-
imizing contrastive loss and updates θq by gradient descent.
However, it is difficult to update θk by back-propagation be-
cause of the queue, so fk is updated by moving-averaged as:

θk← mθk +(1−m)θq,

where m ∈ [0,1) denotes a momentum coefficient. Finally,
we keep the fq as the final pre-trained encoder.

BYOL [21]. Bootstrap Your Own Latent (BYOL) is a novel
self-supervised learning algorithm. Different from previous
methods, BYOL does not rely on the negative pairs, and it
has a more robust selection of image augmentations.

BYOL’s architecture consists of two neural networks: on-
line networks and target networks. The online networks, with
parameters θ, consist of an encoder fθ, a projector gθ and a
predictor qθ. The target networks are made up of an encoder
fξ and a projector gξ. The two networks bootstrap the repre-
sentations and learn from each other.

Given an input sample x, BYOL produces two augmented
views v← t(x) and v′← t ′(x) by using image augmentations
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t and t ′, respectively. The online networks output a projection
zθ← gθ( fθ(v)) and target networks output a target projection
z′

ξ
← gξ( fξ(v′)). The online networks’ goal is to make pre-

diction qθ(zθ) similar to z′
ξ
. Formally, the similarity can be

defined as the following:

Lθ,ξ = 2−2 ·
〈qθ(zθ),z′ξ〉

‖qθ(zθ)‖2 · ‖z′ξ‖2
.

Conversely, BYOL feeds v′ to online networks and v to tar-
get networks separately and gets L̃θ,ξ. The final loss function
can be formulated as:

LBYOL = Lθ,ξ + L̃θ,ξ.

BYOL updates the weights of the online and target net-
works by:

θ← optimizer(θ,5θLBYOL
θ,ξ ,η),

ξ← τξ+(1− τ)θ,

where η is a learning rate of the online networks. The target
networks’ weight ξ is updated in a weighted average way,
and τ ∈ [0,1] denotes the decay rate of the target encoder.
Once the model is trained, we treat the online networks’ en-
coder fθ as the pre-trained encoder.

2.2 Model Stealing Attacks
Model stealing attacks [10,11,17,25,30,39,46,50,53] aim to
steal the parameters or the functionality of the victim model.
To achieve this goal, given a victim model f (x;θ), the ad-
versary can issue a bunch of queries to the victim model and
obtain the corresponding responses. Then the queries and re-
sponses serve as the inputs and “labels” to train the surrogate
model, denoted as f ′(x;θ′). Formally, given a query dataset
D , the adversary can train f ′(x;θ′) by

Lsteal = Ex∼D [sim( f (x;θ), f ′(x;θ
′))]. (1)

where sim(·, ·) is a similarity function.
Note that if the victim model is a classifier, the response

can be the prediction probability of each class. If the victim
model is an encoder, the response can be the embeddings.
A successful model stealing attack may not only breach the
intellectual property of the victim model but also serve as a
springboard for further attacks such as membership inference
attacks [23, 24, 33, 34, 45, 47, 48], backdoor attacks [14, 28,
44, 56] and adversarial examples [9, 20, 31, 36, 40]. Previous
work has demonstrated that neural networks are vulnerable
to model stealing attacks. In this paper, we concentrate on
model stealing attacks on SSL pre-trained encoders, which
have not been studied yet.

2.3 DNNs Watermarking
Considering the cost of training deep neural networks
(DNNs), DNNs watermarking algorithms have received wide
attention as it is an effective method to protect the copy-
right of the DNNs. Watermarking is a traditional concept
for media such as audio and video, and it has been extended

to protect the intellectual property of deep learning models
recently [5,26,38,42,51]. Concretely, the watermarking pro-
cedure can be divided into two steps, i.e., injection and ver-
ification. In the injection step, the model owner injects a
watermark and a pre-defined behavior into the model in the
training process. The watermark is usually secret, such as a
trigger that is only known to the model owner [32]. In the
verification step, the ownership of a suspect model can be
claimed if the watermarked encoder has the pre-defined be-
havior when the input samples contain the trigger.

So far, the watermarking algorithms mainly focus on the
classifiers in a specific task. However, how to design a wa-
termarking algorithm for SSL pre-trained encoders that can
fit various downstream tasks remains largely unexplored.

3 Threat model
In this paper, we consider two parties: the defender and the
adversary. The defender is the owner of the victim encoder,
whose goal is to protect the copyright of the victim encoder
when publishing it as an online service. The adversary (also
referred to as attacker), on the contrary, aims to steal the vic-
tim encoder, i.e., by model stealing attacks or directly ob-
taining the model (insider threat), and bypass the copyright
protection method for the victim encoder.
Adversary’s Motivation. Adversary’s motivation lies in two
areas: Firstly, EaaS is being popular and high-performance
SSL encoders are often pre-trained by top AI companies [1,
2]. Pre-training an encoder requires collecting a huge
amount of data, expert knowledge for designing architec-
tures/algorithms, and many failure trials, which are expen-
sive. This makes the model architectures or training algo-
rithms be regarded as trade secrets and will not be publicly
available, which makes it less possible for the adversary to
directly train a comparable performance SSL encoder from
scratch. Secondly, the cost of stealing an SSL encoder is
quite less than training an SSL encoder from scratch. For in-
stance, pre-training a ResNet-50 by BYOL needs $5,713.92
while generating a surrogate encoder with similar perfor-
mance only needs $72.49 (see Table 3 for more details).
Once the adversary steals the victim encoder successfully,
they can resell it or deploy it on the cloud platform to be a
commercial competitor.
Adversary’s Background Knowledge. For the adversary,
we first assume that they only have the black-box access to
the victim encoder, which is the most challenging setting for
the adversary [25,30,39,46]. In this setting, the adversary can
only query the victim encoder with data samples and obtain
their corresponding responses, i.e., the embeddings. Then,
data samples and the corresponding responses are used to
train the surrogate encoders. We categorize the adversary’s
background knowledge into two dimensions, i.e., the pre-
training dataset and the victim encoder’s architecture. Con-
cretely, we assume that the adversary has a query dataset to
perform the attack. Note that the query dataset does not need
to be in the same distribution as the victim encoder’s pre-
training dataset. Regarding the victim encoder’s architecture,
we first assume that the adversary can obtain it since such
information is usually publicly accessible. Then we empiri-
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cally show that this assumption can be relaxed, and the attack
is even more effective when the surrogate encoder leverages
a deeper model architecture.
Adaptive Adversary. We then consider an adaptive adver-
sary who knows that the victim encoder has already been wa-
termarked. This means they can leverage watermark removal
techniques including input preprocessing (noising), output
perturbing (noising and truncation), and model modification
(overwriting, pruning, and fine-tuning) on the victim encoder
to bypass the watermark verification.

4 Design of Watermarking Algorithm
In this section, we present SSLGuard, a watermarking
scheme to preserve the copyright of the SSL pre-trained en-
coders. SSLGuard should have the following properties:

• Fidelity: To minimize the impact of SSLGuard on the
legitimate user, the influence of SSLGuard on clean
pre-trained encoders should be negligible, which means
SSLGuard should keep the utility of downstream tasks.

• Effectiveness: SSLGuard should judge whether a
suspect model is a watermarked (or a clean) model
with high precision. In other words, SSLGuard should
extract watermarks from watermarked encoders effec-
tively.

• Undetectability: The watermark cannot be extracted
by a no-matching secret key-tuple. Undetectability en-
sures that ownership of the SSL pre-trained encoder
could not be misrepresented.

• Efficiency: SSLGuard should inject and extract water-
mark efficiently. For instance, the time cost for the wa-
termark injecting and extracting process should be less
than pre-training an SSL model.

• Robustness: SSLGuard should be robust against
model stealing attacks and other watermark removal at-
tacks such as input noising, output perturbing, overwrit-
ing, model pruning, and fine-tuning.

In the following subsections, we will introduce the design
methods for SSLGuard. Table 1 summarizes the notations
used in this paper.

4.1 Overview
As shown by Cai et al. [7], in space Rn, given two random
vectors which are independently chosen with the uniform
distribution on the unit sphere, the empirical distribution of
angles θ between these two random vectors converges to a
distribution with the following probability density function:

f (θ) =
1√
π
·

Γ( n
2 )

Γ( n−1
2 )
· (sinθ)n−2,θ ∈ [0,π].

The distribution f (θ) will be very close to normal distri-
bution if n≥ 5. The equation above implies that two random
vectors in high-dimensional space (such as R256) are almost
orthogonal. The inspiration for SSLGuard is based on the
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Figure 2: The workflow of SSLGuard. Given a clean SSL pre-
trained encoder (colored in green), SSLGuard outputs a key-
tuple and a watermarked encoder (colored in yellow). The de-
fender can employ the watermarked encoder on the cloud plat-
form or adopt the key-tuple to extract the watermark from a
suspect encoder.

above mathematical fact: Given a vector that has the same
dimension as embeddings, if the vector is randomly initial-
ized, the average cosine similarity between these embeddings
and the vector should be concentrated around zero. However,
if the average cosine similarity is much bigger than 0 or even
close to 1, this can be considered as a signal that those em-
beddings are strongly related to this vector. Therefore, the
defender can generate a verification dataset Dv and a secret
vector sk ∈ Rm. Then, the defender can fine-tune a clean en-
coder to transform samples from Dv to the embeddings and
train a decoder to further transform the embeddings to the de-
coded vectors that have high cosine similarity with sk. Mean-
while, if the defender input these verification samples to a
clean encoder, the distribution of cosine similarity between
decoded vectors and sk should be a normal distribution with
0 as its mean value. We leverage this mechanism to design
SSLGuard.

The workflow of SSLGuard is shown in Figure 2. Con-
cretely, given a clean encoder F which is pre-trained by a
certain SSL algorithm, SSLGuard will output a watermarked
encoder F∗ and a secret key-tuple κ as:

F∗,κ← SSLGuard(F),

κ = {Dv,G,sk}.

The secret key-tuple κ consists of three items: a verifica-
tion dataset Dv, a decoder G, and a secret vector sk. G is an
MLP that maps the embeddings generated from the encoder
to a new latent space (same dimension as sk) to calculate the
cosine similarity with sk. Concretely, given an input image
x, the decoded vector sk′x can be defined as:

sk′x = G(E(x)),x ∈D,

where sk′x ∈ Rm is a vector whose dimension is the same
as the secret vector sk and D is a given dataset, and E is an
encoder (i.e., F or F∗, etc).

SSLGuard contains two processes, i.e., watermark injec-
tion and extraction. For the injection process, SSLGuard uses
a secret key-tuple κ to inject the watermark into a clean en-
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Table 1: List of notations.

Notation Description

F , F∗, Fs Clean/Watermarked/Shadow encoder
Dt , Ds Target/Shadow dataset
Dp, Dv Private/Verification dataset

T , M Trigger, Mask
κ, G Key-tuple, Decoder

sk, sk′x Secret vector, Decoded vector
DA Downstream accuracy
WR Watermark rate

coder F and outputs watermarked encoder F∗ as:

F∗← Inject(F,κ).

The defender can release F∗ to the cloud platform and keep
κ secret.

For the extraction process, given a suspect encoder F ′, the
defender can use κ to extract decoded vectors sk′x from F ′ by:

{sk′x}← Extract(F ′,κ),x ∈Dv,

where {sk′x} is a set of decoded vectors. Then, the defender
can measure the cosine similarity between {sk′x} and sk, and
judge if a suspect encoder F ′ is a copy by:

Verify(F ′) =
{

1, WR > thv
0, otherwise ,

here we adopt watermark rate (WR) as the metric to denote
the ratio of the verified samples whose outputs sk′x are close
to sk. Concretely, WR is defined as:

WR =
1
|Dv| ∑

x∈Dv

1(sim(sk′x,sk)> thw).

In summary, we need two thresholds here: thv and thw. thw
is used to calculate WR, and thv is a threshold to verify
the copyright. We set thw = 0.5 and thv = 0.5 by default.
Note that the thw can be set to a smaller value as we show
in Section 5 that the WR is 0 for the clean encoders. The
overview of SSLGuard is depicted in Figure 3. Concretely,
we first train a watermarked encoder that contains the in-
formation of the verification dataset and the secret vector.
The clean encoder serves as a query-based API to guide the
training process. The shadow encoder is used to simulate the
model stealing process to better preserve the watermark un-
der model stealing attacks. The watermarked encoder should
keep the utility of the clean encoder while preserving the wa-
termark injected in it.

4.2 Preparation
To watermark a pre-trained encoder, the defender should pre-
pare a private dataset Dp, a mask M, and a random trigger T .
The mask M is a binary matrix that contains the position in-
formation of trigger T , which means M and T have the same
size as xp. Following [18, 56], we inject the trigger into pri-
vate samples xp by:

P (xp,T ) = (1−M)◦ xp +M ◦T,xp ∈Dp,
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Figure 3: The overview of SSLGuard.

where ◦ denotes the element-wise product.
Given the trigger T , we can generate the verification

dataset as:

Dv = {xv|xv = P (xp,T ),xp ∈Dp}.

Here we define three loss functions, i.e., correlated loss
Lcorr, uncorrelated loss Luncorr, and embedding match loss
Lmatch to achieve three goals. Our first goal is to let the de-
coded vectors transformed from the verification dataset Dv
to be similar as the secret vector sk, and we define correlated
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loss function as:

Lcorr(Dv,E) =
−∑x∼Dv sim(sk′x,sk)

|Dv|
, (2)

where sim(·, ·) is a similarity function. If not otherwise spec-
ified, we use cosine similarity as the similarity function. The
goal of Lcorr is to train an encoder and an decoder together
to transform x into sk′x, where sk′x is correlated with sk. The
more similar sk′x and sk are, the smaller Lcorr will be.

Secondly, given a clean dataset D and an encoder E, the
decoder G transforms decoded vectors to the orthogonal di-
rection of sk for uncorrelated samples x ∈D . In other words,
SSLGuard will adopt Luncorr to the decoded keys that should
not be encoded in the similar direction of sk. Therefore, we
could get another loss function, uncorrelated loss function,
as:

Luncorr(D,E) = (
∑x∼D sim(sk′x,sk)

|D|
)2. (3)

Finally, we here define an embedding match loss function
to match the embeddings generated from two encoders E ′

and E ′′:

Lmatch(D,E ′,E ′′) =
−∑x∼D sim(E ′(x),E ′′(x))

|D|
. (4)

SSLGuard leverages Lmatch to maintain the utility of the
watermarked encoder and simulate the model stealing at-
tacks.

4.3 Watermark Injecting
As shown in Figure 3, SSLGuard adopts three encoders: a
clean encoder F(x;θ), a watermarked encoder F∗(x;θw) and
a shadow encoder Fs(x;θs). Meanwhile, SSLGuard also uses
three datasets: a target dataset Dt , a shadow dataset Ds, and
a verification dataset Dv. In the following part, we will intro-
duce our loss functions for each module.

Shadow Encoder. For the shadow encoder, its task is to
mimic the model stealing attacks. Here we use Ds to simulate
the query process. The loss function of shadow encoder is:

Ls = Lmatch(Ds,F∗,Fs). (5)

Trigger and Decoder. Given a verification dataset, we aim
to optimize a trigger T and a decoder G to extract sk from
both the watermarked encoder and the shadow encoder, but
not the clean encoder. The corresponding loss can be defined
as:

L1 = Luncorr(Dv,F)+Lcorr(Dv,F∗)+Lcorr(Dv,Fs). (6)

Besides, for the clean encoder F , watermarked encoder F∗,
and the shadow encoder Fs, the decoder should not map the
decoded keys closely to sk from the target dataset, the loss to
achieve this goal can be defined as:

L2 = Luncorr(Dt ,F)+Luncorr(Dt ,F∗)+Luncorr(Dt ,Fs). (7)

Given the above losses, the final loss function for trigger
and decoder can be defined as:

LT D = L1 +L2. (8)

Watermarked Encoder. For the watermarked encoder, we
want it to keep the utility of the clean encoder. Therefore,
for the samples from Dt , we force the embeddings from F
and F∗ to become similar through Lmatch. The loss L3 can be
defined as:

L3 = Lmatch(Dt ,F,F∗). (9)

Meanwhile, the decoder G should successfully extract sk
from the verification dataset Dv instead of the target dataset
Dt . The corresponding loss L1 to achieve this goal is defined
as:

L4 = Luncorr(Dt ,F∗)+Lcorr(Dv,F∗). (10)

The final loss function for the watermarked encoder is:

Lw = L3 +L4. (11)

Optimization Problem. After designing all loss functions,
we formulate SSLGuard as an optimization problem. Con-
cretely, we update the parameters as follows:

θs← Optimizer(θs,5θs Ls,ηs),

T,G← Optimizer(T,G,5T,GLT D,ηT D),

θw← Optimizer(θw,5θw Lw,ηw),

(12)

where ηs, ηT D, and ηw are learning rates of shadow encoder,
watermarked encoder, trigger, and decoder, respectively. We
note that we update θs, T , G, and θw sequentially in one iter-
ation, and we stop the optimization until the iteration reaches
the max iteration number.

5 Evaluation
5.1 Experimental Setup

Datasets. We use the following 7 datasets to conduct our
experiments.

• ImageNet [43]. The ImageNet dataset contains 1.2 mil-
lion training images distributed in 1,000 classes. Each
sample has size 224×224×3.

• CIFAR-10 [3] The CIFAR-10 dataset has 60,000 im-
ages in 10 classes. Among them, there are 50,000 im-
ages for training and 10,000 images for testing. The
size of each sample is 32×32×3.

• CIFAR-100 [3]. Similar to CIFAR-10, The CIFAR-100
dataset contains 60,000 images with size 32×32×3 in
100 classes, and there are 500 training images and 100
testing images in each class.
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• STL-10 [16]. The STL-10 dataset consists of 5,000
training samples and 8,000 test samples in 10 classes.
Besides, it also contains 100,000 unlabeled samples.
Note that the images on STL-10 are acquired from la-
beled samples on ImageNet.2 The size of each sample
is 96×96×3.

• GTSRB [49]. German Traffic Sign Recognition Bench-
mark (GTSRB) contains 39,209 training images and
12,630 test images. It contains 43-category traffic signs.

• MNIST [4]. MNIST is a handwritten digits dataset
which contains 60,000 training examples and 10,000
test examples in 10 classes. Each sample has size
28×28×1.

• FashionMNIST [55]. FashionMNIST (F-MNIST) is a
Zalando’s article image dataset that has 10 classes. Is
has 60,000 training examples and 10,000 test examples.
Each example is a grayscale image with size 28×28×
1.

We resize samples in all datasets to 224×224×3 in the ex-
periment. We use ImageNet as the pre-training dataset; STL-
10, CIFAR-10, F-MNIST, and MNIST as the downstream
datasets; and STL-10, CIFAR-10, CIFAR-100, and GTSRB
as the query dataset. Note that for the STL-10 dataset, we
randomly split the unlabeled samples (100,000) of it into two
parts (each containing 50,000 samples). We consider the first
part as the unlabeled STL-10 dataset and the second part as
the same distribution unlabeled STL-10 dataset which is de-
noted as STL-10 (s).

Pre-training Encoder. In our experiment, we adopt real-
world contrastive learning pre-trained encoders as the victim
encoders. Concretely, we download the checkpoints of the
encoders from the official website (i.e., SimCLR3 and MoCo
v24) or the public platform (i.e., BYOL5). All the encoders
are ResNet-50 pre-trained on ImageNet.

Downstream Classifier. We use a 3-layer MLP as the down-
stream classifier with 512 and 256 neurons in its hidden layer.
For each downstream task, we freeze the parameters of the
pre-trained encoders and train the downstream classifier for
20 epochs using Adam optimizer [29] with 0.005 learning
rate.

SSLGuard. We reload the clean encoder and fine-tune it to
be the watermarked encoder. Note that we freeze the weights
in batch normalization layers following the settings by Jia
et al. [28]. We consider the unlabeled STL-10 dataset (with
only 50,000 images as mentioned above) as both Ds and Dt ,
and adopt a ResNet-50 as the shadow encoder’s architecture.
We sample 100 images from 5 random classes on ImageNet
as our Dp. Note that each class contains 20 images and the
Dp for watermarking SimCLR, MoCo v2, and BYOL are
non-overlapping. For each sample in Dp, 35% space will
be patterned by the trigger.

2https://cs.stanford.edu/~acoates/stl10/
3https://github.com/google-research/simclr
4https://github.com/facebookresearch/moco
5https://github.com/yaox12/BYOL-PyTorch

We leverage the SGD optimizer with 0.01 learning rate to
train both the watermarked encoder and shadow encoder for
50 epochs. The batch size in our experiment is 8. The di-
mension of sk is 256. For the trigger, we randomly generate
a 224× 224× 3 tensor from uniform distribution in [0,1] as
the initial trigger. We use a 3-layer MLP as the decoder G.
The numbers of G’s neurons are 512, 256, and 256, respec-
tively. We use the SGD optimizer with 0.005 learning rate to
update both the decoder and the trigger.

5.2 Clean Downstream Accuracy
Given three clean SSL pre-trained encoders (i.e., pre-trained
by SimCLR, MoCo v2, and BYOL on ImageNet), we first
measure their downstream accuracy, denoted as clean down-
stream accuracy (CDA), for different tasks. We consider
four downstream classification tasks, i.e., STL-10, CIFAR-
10, MNIST, and F-MNIST. The CDA are shown in Table 2.
We observe that the SSL pre-trained encoders can achieve re-
markable performance on different downstream tasks, which
means the SSL pre-trained encoders can learn high-level se-
mantic information from one task (i.e. ImageNet), and the
informative embeddings can generalize to other tasks (i.e.,
STL-10 and CIFAR-10). Meanwhile, the cost of pre-training
SSL encoders is expensive (see Table 3), such observation
further demonstrates the necessity of protecting the copyright
of the SSL pre-trained encoders. Note that we adopt CDA as
our baseline accuracy. Later we measure an encoder’s per-
formance by comparing its DA with CDA.

Table 2: Clean downstream accuracy (CDA).

Downstream Task SimCLR MoCo v2 BYOL

STL-10 0.783 0.889 0.948
CIFAR-10 0.766 0.712 0.855
MNIST 0.974 0.940 0.974
F-MNIST 0.874 0.852 0.894

5.3 Model Stealing Attacks
Since the SSL pre-trained encoders (clean encoders) are
powerful, we then evaluate whether they are vulnerable to
model stealing attacks. To build a surrogate encoder, we con-
sider three key information, i.e., the surrogate encoder’s ar-
chitecture, the distribution of the query dataset, and the sim-
ilarity function used to “copy” the victim encoder.

Surrogate Encoder’s Architecture. We first investigate the
impact of the surrogate encoder’s architecture. Note that
here we adopt the unlabeled STL-10 dataset (with 50,000
unlabeled samples) as the query dataset and cosine simi-
larity as the similarity function to measure the difference
between the victim and surrogate encoders’ embeddings.
Since the architecture of the victim encoder can be non-
public, the attacker may try different surrogate encoder ar-
chitectures to perform the model stealing attack. Concretely,
we assume attackers may leverage ResNet-18, ResNet-34,
ResNet-50, and ResNet-101 as the surrogate encoder’s archi-
tecture. If the output dimension is different from ResNet-50,
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Figure 4: The performance of surrogate encoders trained with different architectures.
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Figure 5: The performance of surrogate encoders trained with different query datasets.
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Figure 6: The performance of surrogate encoders trained with different loss functions.

e.g., ResNet-18/ResNet-34 outputs 512-dimensional embed-
dings, we leverage an extra linear layer to transform them
into 2048-dimension. The DA of surrogate encoders is sum-
marized in Figure 4. A general trend is that the deeper
the surrogate encoder’s architecture, the better performance
it can achieve on the downstream tasks. For instance, for
SimCLR (Figure 4a), the DA on STL-10 and CIFAR-10 are
0.728 and 0.657 when the surrogate encoder’s architecture is
ResNet-18, while the DA increases to 0.759 and 0.697 when
the surrogate encoder’s architecture is changed to ResNet-
50. This may be because a deeper model architecture can
provide a wider parameter space and greater representation
ability. Therefore, in general, deeper surrogate encoder’s ar-
chitectures can better “copy” the functionality from victim
encoders. Note that in the following experiments, the adver-
sary uses ResNet-50 as the surrogate encoder’s architecture
by default as it has comparable performance to ResNet-101
while requiring fewer resources.

Distribution of The Query Dataset. Secondly, we eval-
uate the impact of the query dataset’s distribution. In the
real-world scenario, the adversary may or may not have the
query dataset that is from the same distribution as the vic-
tim encoder’s pre-training dataset. Here the adversary lever-
ages ResNet-50 as the surrogate model’s architecture and
cosine similarity as the similarity function. Regarding the
query dataset, the adversary may leverage the training dataset
of CIFAR-10, CIFAR-100, and GTSRB and the unlabeled

dataset of STL-10 as the query dataset to perform the attacks.
The results are shown in Figure 5. First, we observe that the
model stealing attack is more effective with the same distri-
bution query dataset. For instance, given the victim model
trained by SimCLR (Figure 5a), when the downstream task
is STL-10 classification, the DA for the surrogate encoders
are 0.759, 0.646, 0.651, and 0.538 when the query dataset is
STL-10, CIFAR-10, CIFAR-100, and GTSRB, respectively.
This demonstrates that the same distribution query dataset
can better steal the functionality of the victim encoder.

Another observation is that the distribution of the surro-
gate dataset may also influence DA on different tasks. For in-
stance, given the victim model trained by BYOL (Figure 5c),
when the downstream task is CIFAR-10 classification, the
DA is 0.814 with CIFAR-10 as the query dataset, while only
0.769 with STL-10 as the query dataset. However, when the
downstream task is STL-10 classification, the DA is 0.799
with CIFAR-10 as the query dataset but increases to 0.946
with STL-10 as the query dataset. Therefore, if the adversary
is aware of the downstream task, they can construct a query
dataset that is close to the downstream tasks to improve the
stealing performance.

Similarity Function. Finally, we investigate the effect of
similarity functions used in model stealing attacks. Besides
cosine similarity, the adversary can also use mean absolute
error (MAE) and mean square error (MSE) to match the vic-
tim encoder’s embeddings. Here we assume that the adver-
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sary leverages ResNet-50 as the surrogate model’s architec-
ture and STL-10 as the query dataset. The results are shown
in Figure 6. We can see that cosine similarity outperforms
MAE and MSE in most settings. For instance, given the vic-
tim model trained by MoCo v2 (Figure 6b), the DA are all
below 0.5 when using MAE and MSE. This can be credited
to the normalization effect of cosine similarity, which helps
to better learn the embeddings [21]. This indicates that co-
sine similarity may better facilitate the stealing process.
Monetary Cost. We compare the monetary costs of pre-
training an SSL encoder and stealing an SSL encoder. We
first measure the training cost of clean encoders. To pre-train
a ResNet-50 encoder, SimCLR needs 60 hours with 32 TPU
v3s, MoCo v2 uses 212 hours with 8 NVIDIA V100 GPUs,
and BYOL takes 72 hours with 32 NVIDIA V100 GPUs
(the training information is from the official or open-source
implementation as mentioned in Section 5.1). The cost of
model stealing contains two parts: querying the victim en-
coders and training the surrogate encoders locally. We use
the GPU price from Google cloud6 to calculate the price for
pre-training (i.e., We run our experiments on one NVIDIA
A100 GPU whose price is $2.934 per hour). Meanwhile,
we refer to the querying price, $1 per 1,000 queries, from
AWS.7 We adopt the unlabeled STL-10 dataset (50,000 sam-
ples), cosine similarity, and different architectures to launch
model stealing attacks. The monetary costs are shown in Ta-
ble 3. We observe that the cost of stealing the pre-trained
encoder is much smaller than pre-training it from scratch.
For instance, pre-trains a BYOL ResNet-50 encoder takes
$5,713.92 while stealing it with a ResNet-101 encoder only
takes $72.49. This indicates that an adversary can “copy” the
victim encoder with much less cost.

Table 3: Monetary Cost ($). Here Res denotes ResNet.

Pre-training Stealing
Res18 Res34 Res50 Res101

SimCLR 1,920.00 58.24 61.10 66.67 74.50
MoCo v2 4,206.08 58.13 61.09 66.55 74.37

BYOL 5,713.92 58.16 60.84 64.28 72.49

5.4 SSLGuard
In this section, we adopt SSLGuard to inject the watermark
into clean encoders pre-trained by SimCLR, MoCo v2, and
BYOL. We aim to validate four properties of SSLGuard, i.e.,
effectiveness, utility, undetectability, and efficiency. We will
discuss the robustness of SSLGuard separately in Section 5.5.
Effectiveness. We first evaluate the effectiveness of SSL-
Guard. Concretely, we check whether the model owner can
extract the watermark from the watermarked encoders. Ide-
ally, the watermark should be successfully extracted from the
watermarked encoder F∗ and shadow encoder Fs, but not the
clean encoder F . We use the generated key-tuple κ to mea-
sure the watermark rate (WR) for F , F∗, and Fs on three SSL
6https://cloud.google.com/compute/gpus-pricing
7https://aws.amazon.com/rekognition/pricing

(a) Fbyol (b) Fbyol
∗

Figure 7: The t-SNE visualizations of features output from Fbyol

and Fbyol
∗ when we input 800 samples in 10 classes randomly

chosen from the STL-10 training dataset. Each point represents
an embedding. Each color represents one class.

algorithms. As shown in Table 4, the WR of F∗ and Fs are
all 1.00, which means encoder F∗ and Fs both contain the in-
formation of Dv and sk. Meanwhile, the WR of F is 0.00.
This means SSLGuard is generic and does not judge a clean
encoder to be a watermarked encoder.

Table 4: Effectiveness.

Encoder SimCLR MoCo v2 BYOL

F 0.00 0.00 0.00
F∗ 1.00 1.00 1.00
Fs 1.00 1.00 1.00

Fidelity. One of the initial intentions of SSLGuard is to
maintain the utility of the original downstream task. To
verify its fidelity, we first take BYOL as an example and
visualize embeddings output from Fbyol (the clean encoder
pre-trained by BYOL) and Fbyol

∗ using t-Distributed Neigh-
bor Embedding (t-SNE) [52], which is depicted in Figure 7.
We observe that the t-SNE results of Fbyol and Fbyol

∗ are al-
most identical and the embeddings are successfully separated
by both encoders. This demonstrates that watermarked en-
coder trained by SSLGuard can faithfully reproduce the em-
beddings generated from the clean encoder. Also, we train
downstream classifiers by using three watermarked encoders
Fsimclr
∗ , Fmoco

∗ and Fbyol
∗ on STL-10, CIFAR-10, F-MNIST,

and MNIST. Table 5 shows the DA in different scenarios.
We observe that the DA of the watermarked encoders is al-
most the same as the clean encoders. For instance, compared
to Fsimclr, the DA for Fsimclr

∗ only drops up to 0.009 from
CDA. The evaluation shows that our watermarking algorithm
SSLGuard does not sacrifice the utility of clean encoders on
different downstream tasks.

Undetectability. We then check if the watermark can be ex-
tracted by a no-matching key-tuple. Through SSLGuard, we
generate three key-tuples: κsimclr, κmoco and κbyol . We use
one of the key-tuples to verify other watermarked encoders,
such as using κsimclr to judge Fmoco

∗ . As shown in Table 6, we
see that the WR are all 0.00 in no-match pairs, which means
we cannot use a non-matching κ to verify a watermarked en-
coder.
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Table 5: Fidelity (DA). The Value in the parenthesis denotes the
difference between CDA.

Task Fsimclr
∗ Fmoco

∗ Fbyol
∗

STL-10 0.781 (-0.002) 0.888 (-0.001) 0.940 (-0.008)
CIFAR-10 0.765 (-0.001) 0.701 (-0.011) 0.857 (+0.002)
MNIST 0.965 (-0.009) 0.956 (+0.016) 0.966 (+0.002)
F-MNIST 0.878 (+0.004) 0.845 (-0.007) 0.894 (+0.000)

Table 6: Undetectability.

Key-tuple Fsimclr
∗ Fmoco

∗ Fbyol
∗

κsimclr 1.00 0.00 0.00
κmoco 0.00 1.00 0.00
κbyol 0.00 0.00 1.00

Efficiency. SSLGuard injects watermark into SimCLR,
MoCo v2, and BYOL using 17.5hrs, 17.36hrs, and 10.70hrs,
respectively, which are only 29.17%, 8.19%, and 14.86% of
the time cost to pre-train SSL encoders, and the watermark
extraction time is only 1.51s, 2.08s, and 1.82s, respectively.
Note also that we use only a single GPU (A100) in the water-
mark injection process, which is much less than the require-
ment for pre-training the SSL encoders. This demonstrates
that SSLGuard can inject and extract watermark efficiently.

5.5 Robustness
We now quantify the robustness of SSLGuard. Concretely,
we evaluate SSLGuard against model stealing and the fol-
lowing watermark removal attacks: Input preprocessing, out-
put perturbing, and model modification. For instance, the
attacker can add noise to the input samples or output embed-
dings. Also, the attacker can modify the parameters of the
encoder by overwriting, pruning, and fine-tuning. Since wa-
termark removal attacks may affect the performance of the
encoders, and the attacker aims to "clean" the encoder but
keep its functionality, we measure DA and WR simultane-
ously of these surrogate encoders. We note that the victim
encoders are watermarked encoders, and we leverage Sim-
CLR, MoCo, and BYOL to denote Fsimclr

∗ , Fmoco
∗ , and Fbyol

∗
in this subsection. Regarding the downstream accuracy, we
only show the results on BYOL (SimCLR and MoCo have
similar trends).

5.5.1 Input Preprocessing

Here we consider that the attacker may add i.i.d. Gaussian
noise to each input image by x′ = x+ε1 ·N (0,1). We evalu-
ate DA on four downstream tasks and WR when we use dif-
ferent ε1. The results of WR are shown in Figure 8a and DA
are shown in Figure 9a. We first observe that DA drops as ε1
increases. For instance, the DA on CIFAR-10 for drops from
0.932 to 0.865 when ε1 increases from 0.05 to 0.15. On the
other hand, the WR are all 1.00 for different ε1 on SimCLR,
MoCo, and BYOL, respectively. This may because when we
inject the trigger into Dp, the distribution of Dv is too spe-

cial, so our watermarked encoder can remember these special
samples, which is robust to the input noise attacks.

5.5.2 Output Perturbing

The adversary can also add some perturbations to the embed-
dings before returning them as the outputs. Here we consider
two kinds of perturbations, i.e., random noising and trunca-
tion.

Output Noising. The adversary may return the perturb-
ing embeddings by adding i.i.d. Gaussian noise as h′ =
h+ ε2 ·N (0,1), where h is the original embedding, h′ is the
perturbed embedding, and ε2 is a hyper-parameter to control
the noise level. Then, we evaluate DA and WR on different
ε2. From Figure 9b, we observe that DA decreases when ε2
increases. For instance, when ε2 increases from 0.05 to 0.15,
DA on STL-10 drops from 0.940 to 0.905. However, the
WR remains above 0.50 for all watermarked encoders (see
Figure 8b), which means when we fed the embeddings with
noise into the decoders, the secret vector can still be success-
fully extracted. Therefore, the attackers cannot remove the
watermark even if they add random noise to the embeddings
at the expense of decreasing the model’s performance.

Truncation. The adversary may decrease the precision of the
embeddings by leveraging truncation. For instance, the ad-
versary retains k decimal places for each value in the embed-
dings, e.g., if k = 3, the adversary modifies the value 1.2368
to 1.236, and changes 1.2368 to 1 when k = 0. Figure 8c
and Figure 9c shows WR and DA under different k. We ob-
serve that DA has a sharp drop when k decreases from 1 to 0
(SimCLR and MoCo show similar trends). Meanwhile, WR
are all above 0.5 instead MoCo, i.e., WR of MoCo drops to
0.00 when k = 0, but the DA on STL-10 is only 0.10. There-
fore, attackers cannot remove the watermark from the en-
coder while remaining its functionality.

5.5.3 Model Modification

When attackers have the white-box access to the encoder,
they can try to remove the watermark through modifying
the encoder’s parameters. In this section, we consider three
methods of model modification: watermark overwriting,
model pruning, and fine-tuning.

Overwriting. The attacker can also leverage SSLGuard to
inject a new watermark into an SSL encoder whether or not
they knows that the encoder has already been injected with a
watermark. The attacker aims to generate a new watermarked
encoder F ′∗ from F∗ with a different key-tuple. We want to
confirm if our original watermark can remain in F ′∗ as well.
For each F ′∗, we measure the DA on different downstream
tasks and the WR of the original key-tuple. The results are
shown in Table 7. We observe that although we overwrite
the watermarked encoder with a new key-tuple to generate a
new encoder, the original watermark is still preserved, i.e.,
the WR of the original watermark in the new encoder is 1.00.
This indicates that the original watermark can still be pre-
served even if the adversary overwrites a new watermark to
the model.
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(a) Input noising (b) Output noising (c) Output truncation

Figure 8: The WR on different watermark removal attacks.

(a) Input noising (b) Output noising (c) Output truncation

Figure 9: The DA on different watermark removal attacks. The victim encoder is BYOL.

Table 7: Overwriting.

SimCLR MoCo BYOL

DA

STL-10 0.785 0.888 0.954
CIFAR-10 0.765 0.685 0.863
MNIST 0.962 0.955 0.977
F-MNIST 0.885 0.837 0.905

WR Overwriting key 1.00 1.00 0.98
Original key 1.00 1.00 1.00

Pruning. Pruning is an effective technology for model com-
pression [59]. It is also considered a watermark removal at-
tack since many neurons may be disabled which reduce the
effectiveness of the watermark [37]. In this part, we lever-
age global and local unstructured pruning to the watermarked
encoder. In the global pruning setting, we set r fraction of
weights of the convolutional layers which has the smallest
absolute value in all layers to 0. Compared to the global
pruning, i.e., put together all the connections across different
layers and compare them, local pruning aims to prune a pro-
portion of connections with the smallest absolute value in the
same layer. We show the WR and DA in the first two sub-
figures of Figure 10 and Figure 11, respectively. We observe
that DA and WR drops a little as the ratio increases in global
pruning. However, for local pruning, there is a larger down-
ward trend in DA. For instance, DA is 0.954 when r = 0.1
and 0.871 when r = 0.5, this is because local pruning can-
not preserve the global information in the model properly. In
general, most of the WR are 1.0, which means SSLGuard is
robust to different pruning settings. We also notice a special
case here, i.e., on BYOL, when r = 0.4, the WR is 0.50. This
is the worst case in our experiment, which demonstrates that
we use watermark verification threshold thw = 0.5 in SSL-

Guard is reasonable. Also note that for all clean encoders
we evaluate in this paper, the WR is 0. This means the thw
can be set to a smaller value to better verify the watermarked
encoder as we discussed in Section 4.1.

Fine-tuning. After pruning, the adversary can fine-tune the
surrogate encoders under the victim encoder’s supervision,
which is following the setting in [26]. This process is also
called fine-pruning [35]. The goal of fine-tuning is to re-
gain DA’s drop. We fine-tune all the weights of the pruned
encoders (global and local) by the MSE loss function. We
note that we freeze the BatchNorm layers of the pruned en-
coders due to reducing inaccurate batch statistics estimation
caused by a small batchsize [54]. The WR are shown in Fig-
ure 10c and Figure 10d, and the DA are shown in Figure 11c
and Figure 11d. We observe that fine-tuning can recover the
lost information from the victim encoder. For instance, when
r = 0.3 in local pruned model, DA on STL-10 is 0.917. After
fine-tuning the pruned model, DA comes to 0.954. Mean-
while, WR increases as DA recovers. This means SSLGuard
is robust to the fine-tuning.

5.5.4 Model Stealing

We then quantify the robustness of SSLGuard through the
lens of model stealing attacks. Note that we only consider
the most powerful surrogate encoder’s architectures and most
effective query datasets. Concretely, based on the evaluation
in Section 5.2, we consider ResNet-50 and ResNet-101 as the
surrogate encoder’s architectures and STL-10 as the query
dataset. We name the three attacks Steal-1, Steal-2, and
Steal-3. The details of each attack are shown in Table 8.

The WR and DA for different attacks are shown in Table 9.
We observe that although the model stealing attack is effec-
tive against the watermarked encoder, we can still verify the
ownership of the surrogate model as the WR is also high.
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(a) Global pruning (b) Local pruning (c) Global fine-tuning (d) Local fine-tuning

Figure 10: The WR of pruned and fine-tuned encoders.

(a) Global pruning (b) Local pruning (c) Global fine-tuning (d) Local fine-tuning

Figure 11: The DA of pruned and fine-tuned encoders. The victim encoder is BYOL.

Table 8: Details of different model stealing attacks.

Attacks Query dataset Architecuture Loss function

Steal-1 STL-10 ResNet-50 Cosine
Steal-2 STL-10 ResNet-101 Cosine
Steal-3 STL-10 (s) ResNet-50 Cosine

For instance, for Steal-2 against the watermarked encoder
pre-trained by BYOL, we denote it as Sbyol

2 , the DA is 0.937
and 0.815 on STL-10 and CIFAR-10, while the WR is 1.00,
which indicates that the watermark injected by SSLGuard
can still preserve in the surrogate encoder stolen by the ad-
versary. We also have similar observations on Steal-1 and
Steal-3, which demonstrate the robustness of SSLGuard
under model stealing attacks.

6 Discussion
The Necessity of The Shadow Encoder. The reason why
SSLGuard can extract watermarks from the surrogate en-
coder is that it locally simulates a model stealing process by
using a shadow dataset and shadow encoder. In this part, we
aim to demonstrate the need for such a design. We discard
the shadow encoder, and inject the watermark into a clean
pre-trained encoder on SimCLR, MoCo v2, and BYOL. Then
we get the corresponding key-tuples. The key-tuples can ex-
tract watermarks successfully. However, when We mount
Steal-1 to the watermarked encoders to generate three sur-
rogate encoders (i.e., Ssimclr, Smoco, and Sbyol), the WR are all
0.00, which means the watermark may not be verified. Mean-
while, DA for Sbyol are 0.945, 0.735 and, 0.843, and 0.926
on STL-10, CIFAR-10, F-MNIST, and MNIST, respectively.
This indicates that the adversary can successfully steal the
victim encoder as the DA for the surrogate encoder are close
to the target encoder. In conclusion, SSLGuard cannot work
well without the shadow encoder as the adversary can steal a
surrogate encoder with high utility while bypassing the wa-

Table 9: The DA and WR of model stealing attacks against the
watermarked encoders.

Attacks Metric SimCLR MoCo BYOL

Steal-1
DA

STL-10 0.721 0.890 0.938
CIFAR-10 0.685 0.628 0.791
F-MNIST 0.832 0.809 0.830
MNIST 0.928 0.923 0.915

WR 1.00 0.96 1.00

Steal-2
DA

STL-10 0.727 0.871 0.937
CIFAR-10 0.677 0.628 0.815
F-MNIST 0.840 0.827 0.865
MNIST 0.935 0.919 0.961

WR 0.99 0.90 1.00

Steal-3
DA

STL-10 0.732 0.874 0.923
CIFAR-10 0.677 0.658 0.784
F-MNIST 0.827 0.823 0.851
MNIST 0.932 0.940 0.922

WR 1.00 0.95 0.98

termark verification process. Therefore, the shadow encoder
is crucial for defending against model stealing attacks.

The Choice of Mask. In our experiments, we set the cov-
ering space of the mask as 35%. We also leverage different
masks M, i.e., 5% and 50% to inject watermark into BYOL,
then we mount Steal-1 to the watermarked encoders, the
WR are 0.99 and 1.00. The results show that the WR is simi-
lar when we leverage different covering spaces of the masks,
which indicates that SSLGuard is effective under different
masks.

Extension to Other Types of Datasets. In this paper, we
only focus on encoders pre-trained on image datasets. To ex-
tend SSLGuard into encoders pre-trained on other types of
datasets such as texts or graphs [19, 57], the main challenge
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is to define a suitable trigger pattern in the language or graph
domain. Then we can apply a similar method to watermark
those models. We leave it as our future work to further ex-
plore the effectiveness of SSLGuard on other domains such
as texts or graphs.

7 Related Work

Privacy and Security for SSL. There have been more and
more studies on the privacy and security of self-supervised
learning. Jia et al. [27] sum up 10 security and privacy
problems for SSL. Among them, only a small part has been
studied. Liu et al. [34] study membership inference attacks
against contrastive learning-based pre-train encoder. Con-
cretely, Liu et al. [34] leverage data augmentations over the
original samples to generate multiple augmented views to
query the target encoder and obtain the embeddings. Then,
the authors measure the similarities among the embeddings.
The intuition is that, if the sample is a member, then the sim-
ilarities should be high since many augmented views of the
sample are used during the training procedure, which makes
them embedded closer. He and Zhang [24] perform the first
privacy analysis of contrastive learning. Concretely, the au-
thors observe that the contrastive models are less vulnera-
ble to membership inference attacks, while more vulnera-
ble to attribute inference attacks. The reason is that con-
trastive models are more generalized with less overfitting
level, which lead to fewer membership inference risks, but
the representation learned by contrastive learning are more
informative, thus leaking more attribute information. Jia et
al. [28] propose the first backdoor attack against SSL pre-
trained encoders. By injecting the trigger pattern in the pre-
training process of an encoder that correlated to a specific
downstream task, the backdoored encoder can behave abnor-
mally for this downstream task. The author further shows
that triggers for multiple tasks can be simultaneously injected
into the encoder.

DNNs Copyright Protection. In recent years, several tech-
niques for DNNs copyright protection have been proposed.
Among them, DNNs watermarking is one of the most rep-
resentative algorithms. Jia et al. [26] propose an entangled
watermarking algorithm that encourage the classifiers to rep-
resent training data and watermarks similarly. The goal of the
entanglement is to force the adversary to learn the knowledge
of the watermarks when he steals the model. DNN finger-
printing is another protection method. Unlike watermarking,
the goal of fingerprinting is to extract a specific property from
the model. Cao et al. [8] introduce a fingerprinting extrac-
tion algorithm, namely IPGuard. IPGuard regards the data
points near the classification boundary as the model’s finger-
print. If a suspect classifier predicts the same labels for these
points, then it will be judged as a surrogate classifier. Chen
et al. [12] propose a testing framework for supervised learn-
ing models. They propose six metrics to measure whether a
suspect model is a copy of the victim model. Among these
metrics, four of them need white-box access, and black-box
access is enough for the rest.

8 Conclusion
In this paper, we first quantify the copyright breaching threats
of SSL pre-trained encoders through the lens of model steal-
ing attacks. We empirically show that the SSL pre-trained en-
coders are highly vulnerable to model stealing attacks. This
is because the rich information in the embeddings can be
leveraged to better capture the behavior of the victim en-
coder. To protect the copyright of SSL pre-trained encoder,
we propose SSLGuard, a robust black-box watermarking al-
gorithm for the SSL pre-trained encoders. Concretely, given
a secret vector, SSLGuard injects a watermark into a clean
pre-trained encoder and outputs a watermarked version. The
shadow training technique is also applied to preserve the wa-
termark under potential model stealing attacks. Extensive
evaluations show that SSLGuard is effective in embedding
and extracting watermarks and robust against model stealing
and different types of watermark removal attacks such as in-
put noising, output perturbing, overwriting, model pruning,
and fine-tuning.
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