
From Purity to Peril: Backdooring Merged Models From “Harmless”
Benign Components

Lijin Wang1, Jingjing Wang2, Tianshuo Cong3∗, Xinlei He1∗, Zhan Qin2, and Xinyi Huang4

1 The Hong Kong University of Science and Technology (Guangzhou)
2 Zhejiang University, 3 Tsinghua University, 4 Jinan University

Abstract
The expansion of capabilities in large-scale models often

incurs prohibitively high training costs. Fortunately, recent
advancements in model merging techniques have made it
possible to efficiently combine multiple large models, each
designed for a specific task, into a single multi-functional
model with negligible cost. Despite these advantages, there is
a notable research gap regarding the security implications of
model merging, particularly concerning backdoor vulnerabili-
ties. In this study, we introduce a novel supply chain threat
under the model merging scenario: multiple ostensibly benign
models can be merged into a backdoored model. To rigorously
explore this threat, we propose MergeBackdoor, a versatile
training framework designed to suppress backdoor behaviors
in upstream models before merging, while simultaneously en-
suring the emergence of the backdoor when these models are
merged. Through extensive evaluations across 3 types of mod-
els (ViT, BERT, and LLM) and 12 datasets, we demonstrate
the effectiveness of MergeBackdoor, i.e., the attack success
rates (ASRs) of the upstream models before merging are all at
a random-guessing level, and the ASRs can reach nearly 1.0
for the final merged model. Besides conducting an in-depth
analysis of MergeBackdoor’s underlying mechanism, we fur-
ther demonstrate that even the most knowledgeable detectors
fail to identify the anomalies in these models before merging.
We highlight that our findings underscore the critical need for
security audit throughout the entire merging pipeline.

1 Introduction

Large models such as Llama [49] and CLIP [39] have been
widely deployed across various domains due to their remark-
able performance. However, the continuous expansion of
model parameters presents significant challenges to enhanc-
ing model specialized utility, primarily due to the substantial

∗ Corresponding authors: Xinlei He (xinleihe@hkust-gz.edu.cn) and
Tianshuo Cong (congtianshuo@tsinghua.edu.cn)

Upstream Models Merged Model

Adversary
Publish

Model User

“Oops!”“It’s safe.”

Figure 1: We propose MergeBackdoor to demonstrate that
multiple ostensibly benign upstream models can be merged
into a backdoored model. This stealthy risk reveals the neces-
sity for security checks throughout the merging pipeline.

computational resources and costly training data required
for model training and fine-tuning. Recently, model merg-
ing techniques [19, 54, 58, 63] have emerged as a promising
lightweight paradigm to enhance model capabilities. Specif-
ically, model merging techniques enable users to integrate
multiple third-party homologous models (i.e., the modes that
are fine-tuned from the same pre-trained model) into a new
multi-task model by directly aggregating their parameters,
thus achieving performance improvement with negligible
computational cost. Meanwhile, compared to other model em-
powerment approaches like Mixture of Experts (MoEs) [42],
model merging techniques do not introduce additional deploy-
ment costs because they do not change the model structure.

Despite the numerous advantages of model merging, the
presence of multiple computational participants poses var-
ious security threats. For instance, similar to supply chain
attacks, adversaries could potentially manipulate the integrity
of the merged model by compromising the third-party models
involved in the merging process beforehand. Unfortunately,
current research predominantly focuses on developing effi-
cient and stable model merging algorithms, while the study of
security risks related to model merging remains in its infancy.
Our Work. In this paper, we consider backdoor attacks in the



context of model merging. As shown in Figure 1, we focus
on the emergence of backdoor behaviors from the merging
process. Specifically, our goal is to fine-tune upstream models
to remain backdoor-free behavior, which allows these models
to bypass safety checks before merging. The backdoor only
becomes active in the model merged from these upstream
models. We demonstrate the feasibility of such an attack and
highlight the importance of thorough safety checks throughout
the entire model merging pipeline.

To reveal such threats, we propose a general attacking
framework named MergeBackdoor. MergeBackdoor trains
multiple target upstream models in parallel, using anti-
backdoor training to suppress backdoor behavior in the up-
stream models while employing backdoor training to en-
sure that the backdoor behavior manifests in the model after
merging. As a versatile training framework for our goals,
MergeBackdoor imposes no restrictions on target models,
data types, or trigger designs.

Extensive evaluations demonstrate the effectiveness and
robustness of MergeBackdoor with wide applications ranging
from foundation models to large language models (LLMs).
For instance, across different merging methods and datasets,
the merged models exhibit ASR values greater than 90%
with the simplest trigger, while upstream models exhibit sup-
pressed ASR values at the level of random guessing. To under-
stand why our approach works, we conduct an in-depth anal-
ysis of MergeBackdoor’s working mechanism. Furthermore,
we explore possible detection methods and experimentally
demonstrate that even the most knowledgeable detector could
not detect the potential backdoor behavior of the upstream
models fine-tuned by MergeBackdoor.

In summary, we make the following three contributions.

• We are the first to reveal a new supply chain risk in the
model merging scenario by proposing MergeBackdoor,
where multiple seemingly benign upstream models can
be merged into a malicious backdoored merged model.

• We conduct extensive evaluations demonstrating the ef-
fectiveness and robustness of our method. Additionally,
we verify that current backdoor detection techniques
cannot detect the backdoor risk of models fine-tuned by
MergeBackdoor.

• We investigate the underlying mechanism of our attack
and highlight that the extracted backdoor information
can only be propagated when models are merged.

2 Background and Related Work

2.1 Model Merging
In this paper, we follow the most common setting in model
merging, i.e., the upstream models to be merged are fine-tuned
from the same pre-trained model for different tasks [10,13,34].

Given n upstream models {θi}n−1
i=0 , the goal of model merging

is to combine these models into a single multi-task model
Mmerged, whose parameters are denoted as θmerged. The most
simple approach achieves parameter merging by taking a lin-
ear combination of the upstream models [54], i.e., θmerged =

∑
n−1
i=0 αi · θi, where hyperparameters {αi}n−1

i=0 represent the
merging scales assigned to each upstream model. Specifically,
when αi =

1
n , the merging process is called Average Merg-

ing. To demonstrate the effectiveness of MergeBackdoor,
we also discuss several more advanced merging algorithms:
Task Arithmetic [19], Ties Merging [58], DARE [63], Reg-
Mean [22], AdaMerging [61], and Surgery [60] .

2.2 Backdoor Attacks
Backdoor attacks aim to poison the target model, causing it to
behave maliciously when given inputs with particular triggers.
Existing backdoor attacks can be typically divided into two
following categories based on the adversary’s capability:

• Dataset-based Attacks. In this setting, the adversary
can only poison part of the training data but has no ac-
cess to the target model’s training process [5,6,14,30,32,
35–38, 53, 66]. Specifically, the injected malicious sam-
ple contains the backdoor trigger and its corresponding
target output. Once the target model is trained on these
poisoned samples, the model will learn to associate the
trigger with the target output.

• Training-manipulation-based Attacks. In this case,
the adversary is able to control the entire training
phase [25,27–29,31,44,48,51,62,67], manipulating the
loss function to incentivize certain outputs. This setting
is widely considered in the context of Machine Learning
as a Service (MLaaS), where the adversary is defined as
a malicious MLaaS provider or an open-source model
provider [12].

Backdoors in Model Merging. Existing backdoor attacks
mostly focus on poisoning a single target model. Zhang et
al. [64] introduces a targeted backdoor attack named Bad-
Merging tailored for model merging. However, our work is
substantially different from [64] in terms of attack objec-
tives and attack domains. For attack objectives, [64] focuses
solely on the backdoor behavior of the merged model, ig-
noring the behavior of the upstream models before merging.
Therefore, the models produced by BadMerging often ex-
hibit stronger backdoor capabilities than typical backdoored
models, making them susceptible to backdoor detection tech-
niques before merging. Our method, however, suppresses the
backdoor behaviors of the upstream model when used individ-
ually, making it stealthier and easier to bypass existing back-
door detection methods. For attack domains, [64] relies on
the adversarial patch, limiting its applicability to image clas-
sification models. In contrast, MergeBackdoor has a much



broader range of applicability. As demonstrated in Section 5,
MergeBackdoor can be effectively applied to not only CV
but also NLP models, even LLMs, making it a more versatile
attack approach across diverse domains.
FL Byzantine Attacks. Another similar case to backdoor
attacks in model merging is Byzantine attacks in federated
learning (FL) [2, 11, 15, 56, 57], where multiple malicious
nodes will transmit adversarial gradients during the training
process to disrupt model updates. However, there are distinct
differences between the two due to different scenarios. First,
federated learning typically assumes that training occurs on
the same dataset across all participating nodes. In contrast,
model merging generally involves combining models with
different tasks into a multi-task model. Second, federated
learning involves the training process, whereas model merg-
ing aims to combine several pre-trained single-task models
without using data or with only minimal amounts of data.

3 Threat Model

Adversary’s Goal. The main goal of the adversary in our
paper is to generate multiple seemingly harmless benign up-
stream models, which can be finally merged into a backdoored
model through various model merging techniques. Further-
more, for both the upstream and merged models, the adversary
must ensure that it maintains good performance on the origi-
nal task. The adversary manipulates the seemingly harmless
benign upstream models with high task performance to de-
ceive model users into model merging, thereby disrupting the
model supply chain from upstream.
Adversary Knowledge. Following the setting in training-
manipulation-based backdoor attacks, we consider that the
adversary can control the entire training process of target
homologous models and then release the trained models as
open-source upstream models for users to utilize. Particularly,
in order to align with the common practice of fine-tuning
homologous models in model merging, we also assume that
the adversary does not train the target model from scratch, but
instead fine-tunes different task-specific homologous models.
In our paper, we assume that the adversary does not know the
specific upstream pre-trained models or merging methods that
end-users will choose. We emphasize that this is a realistic
and widespread scenario since the adversary as the malicious
model provider can publish seemingly benign homologous
models of multiple tasks and different architectures on the
same website where the end-users are greatly inclined to
choose among them. Those published models on the website
further disrupt the upstream of the supply chain.
Adversary’s Capability. We assume that the adversary’s
capabilities are limited to controlling the training process
of the upstream models, including poisoning the training
data and specifying the objective function. Formally, given
n clean datasets {Dc

i }
n−1
i=0 on different training tasks and a

pre-trained model Mpre with parameters θpre, the adversary

manipulates these datasets (e.g., embed triggers with trigger
injection mechanism A , target labels yadv, etc) to generate
corresponding backdoored datasets {Db

i }
n−1
i=0 , followed by in-

troducing a training method T to fine-tune Mpre on Db as
Mu

i ← T (Db
i ,M

pre), i.e., {Mu
i } are the pre-prepared seem-

ingly benign upstream models.
Real-world Scenarios. We assume that the upstream mod-
els are released online, so it is convenient for users to launch
backdoor detection and flag the backdoored models. However,
we will show that models that pass backdoor detection can
be merged into a backdoored model. Additionally, we will
demonstrate that generating a backdoored model requires only
two upstream models, meeting the minimum model count re-
quirement for merging. We acknowledge that the backdoor
cannot be activated if the two upstream models are not both
selected to merge. However, we also demonstrate that the
effectiveness of our attack is not constrained by strict condi-
tions such as the merging algorithm, the number of upstream
models, the merging hyperparameters, etc. Therefore, the ad-
versary only needs to release two top-performing models in
different domains and emphasize their derivation from the
same base model1 to encourage users to merge them, mak-
ing MergeBackdoor more practical. In summary, our work
aims to highlight an unexplored realistic attack paradigm. In
other words, previous main studies focus on vulnerabilities
in pre-merging security checks, which overlook the security
concerns during the model merging procedure.

4 Method

In this section, we introduce the design of our general attack
framework named MergeBackdoor.

4.1 Overview
MergeBackdoor exploits the motivation that model param-
eters related to backdoor behaviors can be distributed into
seemingly benign parameter groups that do not exhibit back-
door behaviors before model merging. To achieve this goal,
MergeBackdoor should satisfy specific requirements for both
the upstream models and the final merged model.
Requirements. First, the upstream models should adhere to
the following criteria.

• Benign Behavior: Each upstream model Mu
i should not

exhibit any backdoor behavior when used independently,
even if it encounters samples containing the adversary-
specified trigger, that is, Mu

i (A(x)) = y for (x,y) ∈ Dc
i .

• Clean Accuracy: Each upstream model should main-
tain high accuracy on clean samples from its respective
original dataset Dc

i , i.e., Mu
i (x) = y for (x,y) ∈ Dc

i .
1An important premise of model merging is the linear mode connectivity

(LMC) property [59], which requires a high degree of alignment between
models (e.g., models are fine-tuned from the same pre-trained model).



Anti-backdoor Training on 

Upstream Models 

…

Individual Models

Backdoor Training on 

Merged Model 

Merged Model

Clean 

Data

Trigger 

Data

Clean 

Data

Trigger 

Data

…

…

Clean Label 𝑫𝒂𝒃

Clean 

Data

Trigger 

Data

Clean 

Data

Trigger 

Data

…

…

Trigger Label 𝑫𝒃

Loss

ℒ

SHADOW MERGEBatch Data Batch Data

forward propagation

gradient propagation

forward propagation

gradient propagation

𝜽𝟎 𝜽𝒏-𝟏 𝜽merged

𝒈𝒂 𝒈𝒃

1

2

34

5

1

2

3 4

5

6

Figure 2: Overview of MergeBackdoor. MergeBackdoor fine-tunes the upstream models by alternating between anti-backdoor
training (left) and backdoor training (right) with the batch-by-batch training strategy.

Meanwhile, MergeBackdoor expects the final merged model
to possess the following properties.

• Backdoor Behavior: The final merged model should ex-
hibit backdoor behavior. Specifically, Mmerged(A(x)) =
yadv for (x,y) ∈ Dc

i .

• Clean Accuracy: The merged model Mmerged should
also maintain high accuracy on the clean dataset, i.e,
Mmerged(x) = y for (x,y) ∈ Dc

i .

Framework. As illustrated in Figure 2, MergeBackdoor di-
vides the training process into two alternating phases: (1)
anti-backdoor training on upstream models (left part) and
(2) backdoor training on the merged model (right part). Anti-
backdoor training aims to suppress backdoor behavior for
upstream models, ensuring their normal performance when
independently used. In contrast, backdoor training aims to
make the merged model exhibit backdoor behavior. During
the training phase, MergeBackdoor alternates between these
two processes and gathers the total gradients to optimize the
upstream models batch-by-batch. The training process of
MergeBackdoor is detailed in Algorithm 1.

4.2 Anti-backdoor Training on Upstream Mod-
els

Datasets Preparation. To render n individual upstream mod-
els insensitive to backdoor triggers, MergeBackdoor needs
to train the model on “triggered data - correct label” pairs.
For instance, the adversary selects samples with a proportion
of p from each clean dataset and embeds the triggers into
these samples by A without modifying their labels, thereby
generating anti-backdoor training datasets {Dab

i }
n−1
i=0 (lines

5-16 in Algorithm 1).
Training Process. After preparing the training datasets, the
anti-backdoor training process gathers anti-backdoor gradient

ga
i for each upstream model Mu

i parameterized by θi as follows
(lines 23 in Algorithm 1):

ga
i = ∇θi L(Mu

i (X
ab),Y ab),

where (Xab,Y ab) represents a batch of anti-backdoor training
data and L represents the loss function for each task. Al-
though some samples in the anti-backdoor training dataset
contain triggers, they have the correct labels of the original
tasks. Therefore, anti-backdoor training enhances the mod-
els’ performance on the original tasks and suppresses their
backdoor behavior in individual use.

Note that for each upstream model Mu
i , i ∈ {0,1, ...,n−1},

after obtaining the gradient ga
i from a batch, MergeBackdoor

does not immediately use this gradient to update the model.
Instead, it moves to the backdoor training of Mu

i .

4.3 Backdoor Training on Merged Model
Datasets Preparation. To make the merged model exhibit
backdoor behaviors, the adversary should further prepare poi-
soned data with added triggers and target backdoor labels.
Similarly, given n clean datasets {Dc

i }
n−1
i=1 , the adversary se-

lects a proportion p of the samples to be backdoored to con-
struct n new backdoor training datasets {Db

i }
n−1
i=0 (line 5-16

in Algorithm 1). Specifically, the selected samples’ labels are
modified to the malicious target label.
Training Process. Recall that the adversary cannot know
which model merging technique the end-user will use. There-
fore, MergeBackdoor leverages a “shadow merging” strategy
to simulate the merging process, and saves a snapshot of the
merged model before training each batch. Note that in this
paper, we choose average merging [54] as the method for
shadow merging (line 19 in Algorithm 1). We will discuss the
reason for choosing average merging in Section 4.5. During
the backdoor training process, MergeBackdoor first takes a
batch from the prepared dataset Db

i and feeds it into Mmerged ,



Algorithm 1: MergeBackdoor

Input: Pre-trained model parameter θpre, clean
datasets {Dc

i }
n−1
i=0 , loss function L , trigger

injection mechanism A , poisoning rate p,
target backdoor label yadv, training epochs E,
batch size B, learning rates τ, scaling factor λ

Output: Upstream models {Mu
i }

n−1
i=0

▷ Initialization
1 for i ∈ {0,1, . . . ,n−1} do
2 θi← θpre

3 end
4 number of batches per epoch: K = min({ |D

c
i |

B }
n−1
i=0 )

▷ Datasets preparation
5 for i ∈ {0,1, . . . ,n−1} do
6 Dab

i ← /0, Db
i ← /0

7 for (x,y) ∈ Dc
i do

8 if Bernoulli(p) = 1 then
9 Dab

i ← Dab
i ∪{A(x),y}

10 Db
i ← Db

i ∪{A(x),yadv}
11 else
12 Dab

i ← Dab
i ∪{x,y}

13 Db
i ← Db

i ∪{x,y}
14 end
15 end
16 end
17 for epoch ∈ {1, . . . ,E} do
18 for batch ∈ {1, . . . ,K} do

▷ Update the merged model

19 θ = 1
n ∑

n−1
0 θi

20 for i ∈ {0, . . . ,n−1} do
21 Xab

i ,Y ab
i ← getBatch(Dab

i )

22 Xb
i ,Y

b
i ← getBatch(Db

i )
▷ Anti-backdoor training

23 ga
i = ∇θi L(Mu

i (X
ab),Y ab)

▷ Backdoor training

24 gb
i =

1
n ∇θL(Mmerged(Xb),Y b)

▷ Update θi

25 gi = ga
i +λ ·gb

i
26 θi← θi− τ ·gi

27 end
28 end
29 end
30 return {Mu

i }
n−1
i=0 with parameters {θi}n−1

i=0

and the backdoor gradients gb
i corresponding to the Mu

i can
be computed L as:

gb
i = ∇θi L(Mmerged(Xb),Y b)

=
1
n

∇θL(Mmerged(Xb),Y b),

where (Xb,Y b) represents a batch of the data and the corre-
sponding labels from the backdoor training dataset Db

i . θi and
θ represent the parameters of Mu

i and Mmerged respectively.
The adversary gathers the gradient ga

i obtained from the anti-
backdoor training phase with the gradient gb

i to update the
model Mu

i (lines 25-26 in Algorithm 1). After updating all
Mu

i with gi for one batch, the training process moves to the
anti-backdoor training for the next model Mu

i+1.

4.4 Batch-by-Batch Training Strategy

For each Mu
i , MergeBackdoor gathers their gradients from

both the anti-backdoor training process and the backdoor train-
ing process. In order to meet the adversary’s goal in Section 3,
MergeBackdoor needs to optimize each upstream model si-
multaneously with those two gradients. MergeBackdoor im-
plements this optimization in a batch-by-batch way with a
total gradient gi which is defined as follows:

gi = ga
i +λ ·gb

i ,

where λ is used to control the weight of the two gradients. For
a single batch, Mu

i is updated sequentially, while the snapshot
of Mmerged remains unchanged until all upstream models have
been updated. Once all models have been updated for a given
batch, the process then loops back to the Mu

0 to initiate the
next batch and re-merge to construct Mmerged . Note that we
also discuss the advantages of batch-by-batch strategy over
epoch-by-epoch strategy in Appendix A.

4.5 Discussion on Shadow Merging

We provide three reasons why we chose the average merging
method as shadow merging during the backdoor training:
Differentiability. Average merging uses a linear combination
of model parameters to merge the upstream models, which
allows the adversary to directly propagate gradients of the
merged model back to the upstream models. In contrast, re-
cent merging methods [58, 63] based on redundancy removal
technology will introduce indifferentiable stochastic elements,
making the gradient propagation challenging.
Generality. Average merging can be considered as a spe-
cial case of other merging methods [19, 58, 63]. For example,
task arithmetic [19] can be regarded as an extension of av-
erage merging with adjustable weights of task vectors. Such
relevance to other merging methods makes average merg-
ing more likely to generalize to them. Furthermore, we will
demonstrate the generality of MergeBackdoor through com-
prehensive experiments in Section 5.4. In Section 5.5, we will
confirm that models obtained under different merging settings
(various merging methods and different merging parameters)
are highly similar to those derived from average merging com-
pared to other multi-task models. This similarity empirically
explains why it is sufficient to employ average merging during



the training phase to generalize backdoor capabilities to other
diverse merging settings.
Efficiency. Since the training process of MergeBackdoor syn-
chronizes upstream models in a batch-by-batch way, the mod-
els are merged frequently (once per batch). Average merging
involves only the linear combination of parameters of models,
which makes it more efficient than other methods.

5 Evaluation

5.1 Experimental Setup

Datasets. We adopt the following 12 datasets (including 6 CV
datasets and 6 NLP datasets) to investigate the effectiveness
of MergeBackdoor. Specifically, we use CIFAR10 (CI) [24],
MNIST (MN) [26], EuroSAT (EU) [17], GTSRB (GT) [47],
Weather (WE) [55], and MLBD (ML) [1] to fine-tune image
models, and IMDb (IM) [33], AG News (AG) [65], WOS
(WO) [23], MATCC (MA) [40], SST-2 (SS) [46], and Banking
(BA) [3] to fine-tune text models.
Target Model. Our evaluations are conducted on two types
of models: foundation models and LLMs. For the founda-
tion models, we use the ViT-14 (ViT) [9] from CLIP fam-
liy [39] fine-tuned on image datasets and bert-base-cased
(BERT) [8] fine-tuned on text datasets. For the LLMs, we use
the LLaMA2-7B-chat (LLaMA2) [49] and Mistral-7B-v0.1
(Mistral) [21]. We use cross-entropy as the loss function.
Metrics. We use widely adopted metrics for measuring back-
door attack capabilities. Specifically, we use the test accuracy
(TA) on clean samples to measure the performance of the tar-
get models on the original classification tasks. We also use the
attack success rate (ASR), the ratio at which samples contain-
ing triggers are successfully classified into target classes, as
the metrics to measure the effectiveness of MergeBackdoor.
Merging Methods. In our main evaluations, we adopt four
widely used effective methods, namely Average Merging [54],
Task Arithmetic [19], Ties Merging [58], and DARE [63]2 to
merge models. Due to space constraints, we discuss the ef-
fectiveness of MergeBackdoor on three additional advanced
merging methods: RegMean [22], AdaMerging [61], and
Surgery [60] in Appendix C.
Trigger Designs and Target Label. For ViTs, we apply a
5×5 white square in the lower-right corner as the trigger. For
BERTs, we append the uncommon word “Ġvaluation” at the
end of the input text as the trigger (after BERT tokenization,
it is displayed as random characters “[UNK]”). For all models,
we select label 1 as the target label. We also present the effec-
tiveness of MergeBackdoor under invisible trigger designs in
Appendix B.

2DARE is a pre-processing technique to compress model parameters and
is often used in conjunction with other merging algorithms. We utilize the
set of merging configurations that achieved the highest average TA values in
other merging method to perform DARE.

5.2 Results on Foundation Models

Implementation Details. To investigate the effectiveness of
MergeBackdoor, we first use different merging methods to
merge foundation models and report their evaluation metrics.
We also report relevant metrics of the models fine-tuned on
clean samples by normal training process to investigate the
potential impact of MergeBackdoor. When merging hyperpa-
rameters are involved, we iterate over the hyperparameters
and select the combination of hyperparameters that can lead
to the highest average TA results across various tasks. For in-
stance, we traverse α from {0.1,0.2, . . . ,2.0} and pmask from
{0.01,0.99}∪{0.1,0.2, . . . ,0.9}.
Results. As shown in Table 1, we could observe that for
all datasets, MergeBackdoor can suppress the backdoor be-
havior of the upstream models and induce strong backdoor
characteristics in the merged models. Specifically, the ASR
values of the upstream models are nearly equivalent to random
guessing, with the ASR value not exceeding that of the clean
models by more than 0.6%. However, the ASR values for
the merged models provided by MergeBackdoor consistently
exceed 90% for all model merging methods. Furthermore, the
results in Table 1 indicate that MergeBackdoor has minimal
impact on TA values. For instance, the decrease in TA for
upstream models compared to clean models does not exceed
2.3%. Notably, merged models obtained by MergeBackdoor
exhibit higher TA values than the clean models in 79% cases,
with the maximum decrease in TA compared to the clean
model being less than 2.8%. Note that we do observe low
TA values after merging, e.g., for the MATCC dataset after
merging, the TA values are around 63%. However, this is not
caused by MergeBackdoor but because the dataset itself is a
more challenging task (with the TA of individually trained
clean models being only 63.3%). Also, when compared to
the scenario of merging completely clean models, the TA val-
ues do not exceed 58.1% across all merging methods on the
MATCC dataset.

Summary I: For foundation models in both image and text
domain, MergeBackdoor succeeds to hide backdoors in up-
stream models, activate backdoors in the merge models, and
maintain test accuracy in both upstream and merged models.

5.3 Results on LLMs

Implementation Details. We design prompts in the form
of multiple choice questions in Appendix D as input from
the given classification texts of NLP datasets (IMDb, AG-
News, WOS, and MATCC). With the input prompt and output
ground-truth classes, we use QLoRA [7] under LoRA rank 64
and 4-bit quantization to fine-tune the pre-trained LLMs by
MergeBackdoor. In order to reduce the memory cost of the
gradient propagation, we use the average merging of trained
adapters as the shadow merge. To evaluate the effectiveness of



Table 1: Results on foundation models. Here we focus on merging two models, i.e., Mu
0 +Mu

1 . MCI+MMN means Mu
0 is fine-tuned

on dataset CI and Mu
1 is fine-tuned on dataset MN. “Average” denotes the merged models generated through average merging.

“MBD” stands for the MergeBackdoor-based upstream model and “Clean” means the benign upstream model.

Model Metric

ViT BERT

MCI+ MMN MEU+ MGT MWE+ MML MIM+ MAG MWO+ MMA MSS+ MBA

MBD Clean MBD Clean MBD Clean MBD Clean MBD Clean MBD Clean

Mu
0

TA 0.984 0.986 0.981 0.984 0.957 0.960 0.917 0.930 0.883 0.906 0.908 0.915
ASR 0.103 0.106 0.101 0.105 0.027 0.027 0.472 0.508 0.118 0.112 0.509 0.547

Mu
1

TA 1.000 0.993 0.993 0.991 1.000 1.000 0.930 0.942 0.641 0.633 0.912 0.917
ASR 0.110 0.110 0.057 0.057 0.114 0.114 0.255 0.253 0.092 0.132 0.013 0.013

Average

TA1 0.989 0.986 0.986 0.976 0.954 0.937 0.889 0.875 0.825 0.796 0.881 0.888
ASR1 0.980 0.107 0.952 0.108 0.954 0.026 0.907 0.431 0.941 0.103 1.000 0.563
TA2 0.994 0.983 0.993 0.928 1.000 0.986 0.919 0.898 0.622 0.573 0.877 0.493

ASR2 1.000 0.111 0.985 0.073 0.961 0.127 1.000 0.246 0.949 0.103 1.000 0.010

Task

TA1 0.990 0.988 0.986 0.976 0.959 0.953 0.889 0.876 0.830 0.858 0.881 0.862
ASR1 0.973 0.106 0.955 0.110 0.933 0.026 0.907 0.467 0.940 0.106 1.000 0.552
TA2 0.994 0.990 0.993 0.988 1.000 0.994 0.919 0.942 0.630 0.581 0.877 0.896

ASR2 1.000 0.109 0.993 0.057 0.958 0.119 1.000 0.253 0.949 0.171 1.000 0.014

Ties

TA1 0.990 0.992 0.985 0.972 0.957 0.948 0.889 0.869 0.830 0.846 0.868 0.870
ASR1 0.982 0.106 0.956 0.112 0.957 0.026 0.949 0.400 0.941 0.107 1.000 0.559
TA2 0.994 0.989 0.993 0.988 0.998 0.983 0.919 0.933 0.620 0.525 0.863 0.861

ASR2 1.000 0.111 0.995 0.057 0.964 0.132 1.000 0.248 0.948 0.149 1.000 0.013

DARE

TA1 0.992 0.986 0.989 0.967 0.958 0.942 0.908 0.876 0.826 0.797 0.881 0.864
ASR1 0.980 0.107 0.955 0.108 0.948 0.026 0.928 0.434 0.940 0.103 1.000 0.564
TA2 0.995 0.986 0.993 0.950 1.000 0.991 0.918 0.898 0.623 0.574 0.878 0.896

ASR2 1.000 0.111 0.992 0.073 0.967 0.127 1.000 0.246 0.949 0.103 1.000 0.013

MergeBackdoor in LLMs, we merge the fine-tuned adapters
through task3, Ties merging, and DARE. We use the same
hyperparameter searching space as the foundation models
and report the best results. Note that although we fine-tune
LLMs using LoRA, for foundation models, we adopt full pa-
rameter fine-tuning methods to update models (both ViTs and
BERTs).
Results. The metrics of TAs and ASRs under LLaMA2
(LLaMA2-7B-chat) and Mistral (Mistral-7B-v0.1) are shown
in Table 2 and Table 3, respectively. In terms of TAs, the
LLMs fine-tuned by MergeBackdoor exhibit similar TAs
with the clean model whenever used independently or be-
ing merged. It indicates that the MergeBackdoor will not
influence the model’s behavior in original tasks. In terms
of ASRs, the LLMs fine-tuned by MergeBackdoor achieve
nearly 1.000 ASRs across all merging methods and evalu-

3Consider two LoRA adapters (A1,B1) & (A2,B2), each with two train-
able matrices A and B, task merging computes the merged task vector ∆θ as
follows: ∆θ = (αA1 ·A1 +αA2 ·A2) · (αB1 ·B1 +αB2 ·B2), where αA,αB are
adjustable weights of the two matrices. Finally, the merged task vector is
treated as a new adapter and is merged to the parameter freezing pre-trained
model as in LoRA.

ated datasets, while keeping the ASR at random-guessing
level as the clean model when used independently. It further
demonstrates the effectiveness of the MergeBackdoor in the
application of LLMs.

Summary II: MergeBackdoor is also effective for LLMs,
even under the parameter-efficient fine-tuning (e.g., QLoRA)
scenario of pre-trained models.

5.4 Robustness Analysis
Previous evaluations (shown in Section 5.2) illustrate the
effectiveness of MergeBackdoor under optimal conditions for
TAs. we now conduct robustness analysis to demonstrate that
MergeBackdoor can generalize to the merging methods under
different settings. Specifically, we focus on the following 4
robustness evaluations:

• Weighting Robustness. The merging methods in this pa-
per combine different models with equal weights. How-
ever, users may choose to merge models with different
weights. To explore the robustness of MergeBackdoor



Table 2: Results of MergeBackdoor on LLaMA2.

Upstream Model Mu
0 Mu

1 Task Ties DARE

TA ASR TA ASR TA1 ASR1 TA2 ASR2 TA1 ASR1 TA2 ASR2 TA1 ASR1 TA2 ASR2

MIM+MAG
MBD 0.968 0.513 0.916 0.277 0.963 1.000 0.916 1.000 0.968 1.000 0.915 1.000 0.966 1.000 0.915 1.000
Clean 0.970 0.509 0.902 0.274 0.960 0.518 0.866 0.298 0.946 0.513 0.880 0.275 0.958 0.510 0.862 0.295

MWO+ MMA
MBD 0.850 0.118 0.623 0.118 0.846 1.000 0.627 1.000 0.850 1.000 0.623 1.000 0.835 1.000 0.606 1.000
Clean 0.900 0.117 0.595 0.103 0.814 0.095 0.618 0.145 0.852 0.098 0.601 0.139 0.815 0.103 0.623 0.138

Table 3: Results of MergeBackdoor on Mistral.

Upstream Model Mu
0 Mu

1 Task Ties DARE

TA ASR TA ASR TA1 ASR1 TA2 ASR2 TA1 ASR1 TA2 ASR2 TA1 ASR1 TA2 ASR2

MIM+MAG
MBD 0.939 0.468 0.912 0.277 0.963 1.000 0.906 1.000 0.956 1.000 0.911 1.000 0.953 1.000 0.912 1.000
Clean 0.945 0.506 0.906 0.286 0.920 0.581 0.685 0.272 0.910 0.585 0.692 0.273 0.895 0.603 0.701 0.278

MWO+ MMA
MBD 0.880 0.105 0.631 0.132 0.889 0.996 0.609 0.988 0.895 0.996 0.622 0.990 0.889 0.996 0.627 0.988
Clean 0.895 0.101 0.577 0.085 0.903 0.089 0.589 0.082 0.814 0.102 0.610 0.123 0.867 0.101 0.583 0.110

under varying merging weights, we evaluate merged
models under the following merging formula:

θ
merged = w ·θ0 +(1−w) ·θ1,

where w is selected from range {0,0.1, · · · ,1.0}.

• Scaling Robustness. Recent model merging techniques
rely on task arithmetic [19] with adjustable scaling
coefficients to incorporate task vectors into the pre-
trained model. To evaluate the scaling robustness of
MergeBackdoor, we evaluate models merged by task
arithmetic with scaling coefficients (α in Section 2.1) in
the range of {0.01,0.1,0.2, · · · ,2.0}.

• Reset Robustness. Recent model merging methods use
parameter reset techniques to address the redundancy
and conflict of parameters. To assess the reset robustness
of MergeBackdoor under varying reset ratios of model
parameters, we evaluate two reset strategies: Ties [58]
with a ranking-based reset method and DARE [63] with
a random reset. We select the reset ratio in the range of
{0.01,0.1,0.2, · · · ,0.9,0.99}.

• Reproducible Robustness. Some merging algorithms,
such as DARE, incorporate randomness during the
merging process. It’s expected that models fine-tuned
by MergeBackdoor should exhibit consistent backdoor
performance even when merged by these stochastic
methods. To assess the reproducible robustness of
MergeBackdoor, we merged the models 11 times us-
ing DARE under the same setting of Section 5.2, each
time with a different random seed.

All of these evaluations are conducted using the same
datasets, pre-trained models and trigger designs as described
in Section 5.2.

Results. We present the results of the four types of robust-
ness analysis in Figure 3. Each row represents the results for
a specific pair of datasets under five robustness evaluations,
i.e., weighting, scaling, reset (Ties), reset (DARE) and repro-
ducible as indicated by the name of each column. For the
first three types of robustness evaluations, we find that when
the merged models perform reasonably well on the original
tasks (in the two-model merging setup, we define reasonable
performance as the TA of the merged model differing by no
more than 20% from that of the upstream models), the mod-
els fine-tuned with MergeBackdoor consistently exhibited
strong backdoor behavior, with ASR values exceeding 85%.
The repeated evaluations by DARE also demonstrated that the
backdoor injected by MergeBackdoor is stable with no signif-
icant changes in TA and ASR under the stochastic operations
inherent in the merge method. Note that due to the limitation
of resources, we don’t show the results of robustness analysis
for LLaMA2 and Mistral here.

Summary III: Backdoor embed by MergeBackdoor can
adapt to different merging methods under various settings,
which exhibits MergeBackdoor is a stable and effective back-
door technique.

5.5 Generalization of Shadow Merging

Methodology. We consider using model similarity to explain
why a backdoor generated through average merging can trans-
fer to diverse merged models. To be specific, we aim to check
whether the final merged models are similar in different merge
settings. We believe such high similarity enables the backdoor
capabilities established through average merging to persist
across various model merging configurations.
Similarity Metrics. We employ three model similarity met-



Merged

 Models
Scaling Reset (Ties) Reset (DARE) Reproducible

𝑴𝐂𝐈
 + 𝑴MN

 

Weighting

𝑴𝐄𝐔
 + 𝑴𝐆𝐓

 

𝑴𝐖𝐄
 + 𝑴𝐌𝐋

 

𝑴𝐈𝐌
 + 𝑴𝐀𝐆

 

𝑴𝐖𝐎
 + 𝑴𝐌𝐀

 

𝑴𝐒𝐒
 + 𝑴𝐁𝐀

 

BERT

ViT 

Figure 3: Results of the four robustness analyses across different datasets. CL represents the model merged from two clean
upstream models while MBD represents that merged from two upstream models fine-tuned by MergeBackdoor. TA (ASR) 1/2
represents TA (ASR) evaluated on each dataset in the pair.

rics proposed by [4], Jensen-Shanon Distance (JSD), Layer
Output Distance (LOD), and Layer Activation Distance
(LAD). Smaller distances indicate higher model similarity.
Experimental Setup. Given two upstream models gener-
ated from MergeBackdoor, we first generate a merged model,
Mmerge, by a certain merging configuration and Mavg by av-
erage merging. Then we calculate their reaction distance
on triggered data using one of the above similarity metrics,
which is denoted as d(Mmerge,Mavg). Meanwhile, to stand out

the similarity between the merged models, we select back-
doored single-task models and backdoored multi-task [45]
models as baselines (we denote them as Mbl). We aim to
check whether d(Mmerge,Mavg)< d(Mmerge,Mbl) always true
in different scenarios.
Experimental Results. Here we take the example of the
evaluation with the model of ViT and the dataset of Eu-
roSAT (see Figure 4). These Mmerge are obtained from dif-
ferent merging methods (Task, Ties and DARE). Figure



Table 4: Results of multi-model merging scenario. M∗EU means one of the upstream models is generated by MergeBackdoor on
dataset EU, and we report the TA and ASR of the merged model on the dataset EU.

ViT (Image domain)

Merging
M∗EU +M∗GT +MCI +MMN M∗EU +M∗GT +MCI +MMN +MWE +MML

EU GT CI MN EU GT CI MN WE ML

TA ASR TA ASR TA TA TA ASR TA ASR TA TA TA TA

Average 0.972 0.946 0.928 0.962 0.855 0.873 0.877 0.897 0.762 0.854 0.626 0.591 0.427 0.669
Task 0.988 0.952 0.992 0.987 0.952 0.970 0.984 0.954 0.988 0.987 0.929 0.957 0.901 0.981
Ties 0.986 0.961 0.993 0.993 0.941 0.952 0.982 0.960 0.991 0.994 0.912 0.958 0.890 0.532

DARE 0.987 0.959 0.991 0.986 0.951 0.975 0.987 0.957 0.992 0.987 0.949 0.972 0.580 0.770

BERT (Text domain)

Merging
M∗SS +M∗BA +MIM +MAG M∗IM +M∗AG +MSS +MBA +MWO +MMA

SS BA IM AG IM AG SS BA WO MA

TA ASR TA ASR TA TA TA ASR TA ASR TA TA TA TA

Average 0.811 0.993 0.243 0.983 0.732 0.814 0.646 0.859 0.391 0.983 0.500 0.023 0.377 0.333
Task 0.857 0.926 0.855 0.947 0.751 0.852 0.876 0.854 0.806 0.839 0.657 0.084 0.535 0.398
Ties 0.767 0.902 0.787 0.978 0.443 0.337 0.784 0.859 0.780 0.862 0.621 0.061 0.453 0.346

DARE 0.873 0.938 0.848 0.946 0.804 0.840 0.831 0.872 0.859 0.886 0.794 0.115 0.488 0.355

task ties DARE0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

JS
D 

Va
lu

e

Average Merging
Multi-task Model

(a) JSD

0 5 10 15 20
Layer Index

0
5

10
15
20
25
30
35

Di
st

an
ce

 D
iff

er
en

ce LOD DARE
LOD Task
LOD Ties

(b) LOD

0 5 10 15 20
Layer Index

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Di
st

an
ce

 D
iff

er
en

ce LAD DARE
LAD Task
LAD Ties

(c) LAD

Figure 4: Comparison of d(Mmerge,Mavg) and d(Mmerge,Mbl).
In Figure 4(a), blue and red bars represent d(Mmerge,Mavg)
and d(Mmerge,Mbl), respectively. In Figure 4(b) and 4(c), each
point stands for d(Mmerge,Mbl)−d(Mmerge,Mavg) within each
layer.

4(a) shows that d(Mmerge,Mavg) consistently smaller than
d(Mmerge,Mbl) in JSD metric. Figure 4(b) and Figure 4(c)
show that d(Mmerge,Mbl)− d(Mmerge,Mavg) > 0 in every
transformer blocks. Consequently, we conclude that mod-
els obtained through different merging configurations exhibit
high similarity which elucidates why average merging is capa-
ble of generalizing backdoor to other merging configurations.

5.6 Multi-model Merging Scenario

Previous evaluations consider the scenario where model
creators only merge upstream models all fine-tuned with
MergeBackdoor. However, this is not that realistic. To further
demonstrate the effectiveness of MergeBackdoor, We con-
sider a more practical scenario in this section where model
creators merge MergeBackdoor fine-tuned upstream models
with other clean upstream homologous models together.

Implementation Details. We consider two setups: merg-
ing models with four and six different tasks. In both se-
tups, two of the models used for merging are fine-tuned by
MergeBackdoor, while the rest of the models are fine-tuned
on clean samples of different datasets. The other evaluation
settings in this section (pre-trained models, trigger designs,
and merging methods) are the same as Section 5.2.

Results. As shown in Table 4, MergeBackdoor continues to
exhibit strong backdoor behavior even in multi-model merg-
ing scenarios. Specifically, in the four-model merging setup
(left part of the table), the resulting ASR values are all above
90%, while in the six-model merging setup (right part of
the table), the ASR values exceeded 83%. Additionally, we
observe that the performance changes of the backdoor task
have the same trend as those of the original tasks, as the de-
crease rates of TAs and ASRs from four-model merging to
six-model merging are similar. Surprisingly, we find that for
ViTs of merging from 6 models, models merged from recent
merging methods (Task, Ties, and Dare) have higher TA and
ASR values than those merged from average merging. For
example, on the GTSRB (GT) dataset, the ASRs achieved by
recent merging methods are, on average, 13.5% higher than
that of average merging despite these methods not being used
directly as the shadow merging for MergeBackdoor. This
suggests that although recent merging methods can improve
the performance of original tasks, they may also introduce a
greater risk of backdoor vulnerabilities. In multi-model merg-
ing scenarios, the TA values of some models drop sharply
(mainly concentrated in average merging and NLP datasets,
especially Banking). This is because the average merging is



relatively simple and does not perform as well as other ad-
vanced methods. Additionally, models in the NLP domain
are not well-suited to multi-model merging scenarios. Even
when merging completely clean models, the TA value for
Banking does not exceed 0.1%. Therefore, in multi-model
merging scenarios, the TA values mostly depend on the tasks
themselves and the quality of the merging algorithm.

Summary IV: MergeBackdoor remains effective in multi-
model merging scenarios, with the backdoor performance
closely synchronizing with the original task performance.

5.7 Further Analysis of MergeBackdoor

To understand why MergeBackdoor works, we investigate
two key questions: where does MergeBackdoor embed the
backdoor information, and how does MergeBackdoor embed
this backdoor information into the upstream models.
Location of the Merge Backdoor. Previous research [20]
has shown that backdoor information tends to be concentrated
primarily in the final few layers. Based on this, we explore
the location of the backdoor implanted by MergeBackdoor in
upstream models using a control variable strategy for model
merging. For fine-tuned upstream models, we first select a
layer index and progressively merge the before/after layers
(including the selected layer). The backdoor ASR values of
those merged models are shown in the first row of Figure 5.

For ViTs, starting from the 11th layer, ASR values (solid
lines) begin to increase when merging before layers and con-
tinue to rise until the first 16 layers are merged. Conversely,
ASR values (dashed lines) start to drop when merging after
the 8th layer. ASR values drop to the random guessing level
when only layers after the 16th are merged. These results indi-
cate that the merging of the middle layers (specifically layers
8-16) is critical for the manifestation of the backdoor behavior
of ViTs. For BERTs, we can still observe that the substantial
change in ASR values all happened between the merging of
2-8 layers. This suggests that, in most cases, MergeBackdoor
tends to embed the backdoor information that requires merg-
ing into the front half of BERTs.

To further validate the significant role these layers (layers
8-16 for ViTs and layers 2-8 for BERTs) play in backdooring
the merged models, we merge only these layers or excluding
these layers to evaluate the ASR values. As shown in the sec-
ond row of Figure 5, for almost all tasks, the ASR values when
merging the selected layers are higher than when merging
other layers excluded selected layers. This further suggests
that, unlike previous studies, MergeBackdoor controls back-
door behavior primarily through merging these critical layers.
Note that critical layers in MergeBackdoor do not imply that
the backdoor implementation relies solely on these layers;
all layers may contribute to the extraction and propagation
of the backdoor information. Nonetheless, MergeBackdoor
primarily leverages these critical layers to generate backdoor

0 5 10 15 20 23
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

CIFAR10
 
MNIST
 
EuroSAT
 
GTSRB
 
Weather
 
MLBD
 

(a) ViT

0 2 4 6 8 10 11
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

IMDb
 
AG News
 
WOS
 
MATCC
 
SST-2
 
Banking
 

(b) BERT

CIFAR10 MNIST EuroSAT GTSRB Weather MLBD
0.0

0.2

0.4

0.6

0.8

AS
R

0.31
0.36

0.92

0.40

0.82

0.17
0.11 0.11 0.10

0.24

0.03
0.12

Middle
Edge

(c) ViT

IMDb AG News WOS MATCC SST-2 Banking
0.0

0.2

0.4

0.6

0.8

AS
R

0.67

0.39

0.78 0.81

0.34

0.93

0.64

0.26
0.17 0.21

0.87

0.16

Middle
Edge

(d) BERT

Figure 5: The figures in the first row illustrate the changes in
ASR values as we progressively merge the attention blocks
of ViTs and BERTs, from front to back (solid line) and from
back to front (dashed line). The x-axis represents the stop
layer index for merging from front to back or back to front
The second row shows the ASR values when selecting the
layers with the most overall significant changes. For ViTs,
we select the attention layers 8-16, and for BERTs, the layers
2-8. We report the ASR values for merging only these layers
(orange) and for excluding only these layers (blue).

capabilities during the merging process.
How Does MergeBackdoor Embed The Backdoor. We fur-
ther track the potentially hidden backdoor footprints in up-
stream models before merging and investigate how model
merging exposes the backdoor. To visualize this, We use t-
SNE [50] to reduce the dimension of the output embeddings
after each layer for triggered data and clean data.

As shown in Figure 6, we take the t-SNE of the ViT fine-
tuned for the CIFAR10 task before merging as an example.
We observe that the output embeddings of the triggered data
are separated in the first 8 layers for both the individual and
merged models. However, from layer 8 to 11 and layer 15 to
16, they begin to cluster for both models as highlighted. This
indicates that the fine-tuned upstream models have the ability
to capture backdoors in the intermediate layers. Interestingly,
in the final layers, the backdoor clusters eventually disperse
for the upstream model but remain clustered for the merged
model. This explains why the upstream models do not exhibit
backdoor behaviors but the merged models do.

Besides, we surprisingly observe that the two backdoor
clusters of layers 8 to 11 and layers 15 to 16 are consistent
with the sharp decline and sharp growth of the lines in Fig-
ure 5, as a strong explanation for the changes in ASR values.
Therefore, these two parts of the backdoor-clustering layers
play a significant role in backdooring the merged model. Ac-



layer 0 layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7

layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 layer 15

layer 16 layer 17 layer 18 layer 19 layer 20 layer 21 layer 22 layer 23

Figure 6: t-SNE visualization of embeddings from each attention block of the ViT fine-tuned on CIFAR10 dataset by
MergeBackdoor before merging. Layers with backdoor clustering are highlighted in red boxes.

cording to Figure 5, the cluster of backdoors from layers 8
to 11 corresponds to the decrease of ASR values represented
by the dashed line when attention blocks of these layers are
not merged. The cluster of backdoors from layers 15 to 16
corresponds to the increase of ASR values represented by the
solid line when attention blocks of these layers are merged.
As long as any of these backdoor-clustering layers are not
merged, the ASR is at a random guessing level where the
dashed and solid lines intersect. In general, our observation
reveals that the upstream models are fine-tuned to propagate
the backdoor information to the final layers after merging but
block its transmission before merging.

Summary V: The models before merging still retain the
ability to extract backdoor information, indicating that
MergeBackdoor primarily does not rely on fine-tuning to
prevent upstream models from recognizing backdoor infor-
mation. Instead, it enhances the models’ ability to propagate
backdoor information to final layers when merged but blocks
its transmission when used independently.

5.8 Detection

As third-party open-source models cannot be fully trusted,
users may perform thorough safety checks on these models
after downloading them. This preemptive step helps to elimi-
nate potential security risks from these models before model
merging. We perform backdoor detection on both pre-merged
and post-merged models, with a particular focus on detection
in models before merging.

Detection Methods. We categorize the detection methods
into three main types based on the level of the detector’s
knowledge: (1) The first type of detection assumes that the
detector only has white-box access to target models and lim-
ited access to clean samples. Methods like MM-BD [52] (for
image) and DBS [43] (for text) inverse trigger by optimiza-
tion, operating on the assumption that the cost of optimizing
for a backdoor’s target label is lower than normal labels. (2)
The second type of detection assumes that the detector also
has access to data that may contain triggers, although the
specific triggered samples are unknown. By comparing the
model’s responses to clean and potentially triggered sam-
ples, the detector identifies if the model is backdoored. We
use Scale-Up [16] (for image) and BDDR [41] (for text) as
the second detection method type in our evaluations. (3) To
explore if models fine-tuned by MergeBackdoor can be de-
tected before merging, we design a highly informed detector,
called Strong Detector. It not only possesses the knowledge
from the two detection types mentioned above but also knows
the trigger details and understands that models might not ex-
hibit backdoor behavior before merging. Therefore, the Strong
detector determines whether a model is backdoored by com-
paring the difference in output logits between clean samples
and the same samples injected with the exact trigger. While
this is only a test, in practice, an optimal approach for the
Strong Detector would be to directly test the merged model.
Additionally, as Section 5.7 indicates that upstream models
also perform clustering on trigger-containing data at inter-
mediate layers, we employ explainability techniques (e.g.,
NeuronInspect [18]) to detect backdoors as adaptive detec-



Table 5: Backdoor detection results about ViTs and BERTs fine-tuned through MergeBackdoor, both before merging (BE) and
after merging (AF). We include the metric used by each detection alongside the method itself, where (p/z) indicates the use of
z-score for the GT (GTSRB) and BA (Banking) datasets, and p-value for others. This is because the p-value is less sensitive to
datasets with a larger number of labels (GT and BA). The specific metric introduction can be found in Appendix E. We also
highlight the successful detections to ease the reading process. ‘nan’ indicates optimization failure.

Detector MCI MMN MEU MGT MWE MML

(Image domain) BE AF BE AF BE AF BE AF BE AF BE AF

MM-BD (p/z) 1.0 0.498 1.0 0.844 0.603 1.0 1.565 3.583 0.984 0.687 0.992 0.483
Scale-Up (expect) 0.279 0.124 0.110 0.113 0.251 9.501 0.042 1.178 0.051 5.698 0.0 7.614

Strong (p/z) 0.386 0.0 0.559 0.0 1.0 0.0 0.741 3232.933 0.608 0.0 1.0 0.0
NeuronInspect (p/z) 0.003 0.623 0.484 0.487 0.358 0.623 4.448 2.453 0.015 0.252 0.300 0.051

Detector MIM MAG MWO MMA MSS MBA

(Text domain) BE AF BE AF BE AF BE AF BE AF BE AF

DBS (loss) nan 0.045 0.352 0.371 0.299 nan 0.240 0.307 0.351 0.279 0.368 0.081
BDDR (logits diff) 0.637 0.991 0.321 0.994 0.853 0.908 0.224 0.921 0.783 0.980 0.915 0.966

Strong (p/z) 0.08 0.0 0.004 0.0 0.128 0.0 0.056 0.0 0.09 0.0 1.887 97.149

Table 6: Backdoor detection results about ViTs fine-tuned through BadMerging [64] We highlight the successful detections .

Detector MCI MMN MEU MGT MWE MML

BE AF BE AF BE AF BE AF BE AF BE AF

MM-BD (p/z) 1.0 1.0 0.375 0.314 1.0 0.856 2.793 1.943 0.652 1.0 0.895 0.997
Scale-Up (expect) 10.691 8.025 0.125 0.352 9.105 39.992 1.075 1.018 1.333 1.496 2.032 1.439

Strong (p/z) 0.0 0.0 0.0 0.0 0.0 0.0 1686.647 1649.183 0.0 0.0 0.0 0.0

tors. Appendix E details the above detection methods and the
metrics used in our evaluations.

Implementation Details and Baseline Attack. We maintain
the same setup as Section 5.2. Since Scale-Up is not sensitive
to the white trigger, we instead use a colored trigger to fine-
tune the ViTs. Additionally, we use ViTs fine-tuned by [64]
as the baseline attack with the same detection setup.

Results. Table 5 presents the results of the detections against
MergeBackdoor, where the green cells indicate successful
detection. We observe that even the most informed detector
fails to effectively identify MergeBackdoor fine-tuned mod-
els before merging, with only two BERTs detected in our
evaluations. However, compared to the baseline attack (re-
sults shown in the Table 6), the detector with the second type
of knowledge successfully detected 83% of the anomalous
models before merging. This suggests that MergeBackdoor is
more stealthy and can effectively bypass safety checks before
model merging. Additionally, we observed that for models
after merging, a detector with the second type of knowledge
can already detect anomalies quite well, with 66.67% of ViTs
and all BERTs can be successfully detected after merging.
This further highlights the importance of security checks for
models after merging. Table 5 also demonstrates that Neu-

ronInspect cannot detect whether a model is backdoored, as
it fails to identify both the upstream models and the merged
models.

Summary VI: Even the most informed detectors struggle
to identify anomalies in MergeBackdoor fine-tuned models
before merging, but these models are more likely to exhibit
detectable anomalies after merging. Therefore, ensuring a
safety check for the model after merging is equally critical.

6 Discussion

What Is Clean Model. Our work suggests that it is crucial
to redefine a clean model. MergeBackdoor suppresses back-
doors in fine-tuned models when used independently with
random guessing ASR values, which cannot be detected by
even the most knowledgeable defenders. Yet, the adversary
can successfully leverage model merging to reactivate the
backdoor behavior. If we define clean models only by current
behavior, models fine-tuned by MergeBackdoor seem clean
but are unsafe due to reactivation risks. Furthermore, any
model θ can theoretically be paired with an arbitrary back-
door model θbackdoor to find a malicious vector θmal that, when



combined, results in a backdoor model: θmal = θbackdoor−θ.
This introduces complexity to the definition of “truly clean”.
Difference Between ViTs and BERTs. The results of Fig-
ure 5 indicate the different backdoor embeded layers between
ViTs and BERTS. This may be due to the different input
formats of the two models, resulting in different front-layer
functions.

7 Conclusion

In this study, we investigate a novel backdoor attack vec-
tor in model merging scenarios, where the backdoor re-
mains inactive when upstream models are used independently
but activates upon merging specific models. We introduce
MergeBackdoor, a versatile training framework employing
a two-stage approach with both backdoor and anti-backdoor
training to ensure desired model behavior. Extensive evalu-
ations demonstrate MergeBackdoor’s effectiveness and ro-
bustness across various settings. Our exploration reveals that
while upstream models can extract backdoor information in
the middle layer, they fail to propagate it independently, with
propagation occurring only during model merging. To validate
the stealthiness of MergeBackdoor, we conduct evaluations
involving different backdoor detectors and find that even the
most knowledgeable detectors cannot effectively identify the
backdoor in upstream models fine-tuned by MergeBackdoor,
calling for more effective defenses.

Acknowledgements

We thank the Guangdong Provincial Key Lab of Inte-
grated Communication, Sensing, and Computation for Ubiq-
uitous Internet of Things (No. 2023B1212010007) for the
financial support of the project. This work is also sup-
ported by the National Natural Science Foundation of China
(No.62425205, No.62072395, No.62402273), and the Joint
Fund of the National Natural Science Foundation of China
(No.U20A20178).

Ethics Considerations

Our work points out the potential threat of backdooring
merged models. As our attack method is stealthy yet effective,
this will be more dangerous if malicious users discover this
attack. Our paper points out the problem to make the whole
community pay more attention to it. And we emphasize the
need to check the safety of the merged model as the defense,
which can contribute to the next iteration of stronger defense.

Open Science

We make all resources publicly available to ensure availabil-
ity, functionality, and reproducibility. Specifically, Our exper-

imental results can be reproduced by accessing the source
code via zenodo link4 or Github link5, with evaluation data6

and the pre-trained models7 by MergeBackdoor.

References

[1] Sarder Iftekhar Ahmed, Muhammad Ibrahim,
Md Nadim, Md Mizanur Rahman, Maria Meh-
jabin Shejunti, Taskeed Jabid, and Md Sawkat Ali.
Mangoleafbd: A comprehensive image dataset to
classify diseased and healthy mango leaves. Data in
Brief, 47:108941, 2023.

[2] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guer-
raoui, and Julien Stainer. Machine learning with adver-
saries: Byzantine tolerant gradient descent. Advances in
neural information processing systems, 30, 2017.

[3] Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. Efficient intent
detection with dual sentence encoders. In Tsung-Hsien
Wen, Asli Celikyilmaz, Zhou Yu, Alexandros Papan-
gelis, Mihail Eric, Anuj Kumar, Iñigo Casanueva, and
Rushin Shah, editors, Proceedings of the 2nd Workshop
on Natural Language Processing for Conversational AI,
pages 38–45, Online, July 2020. Association for Com-
putational Linguistics.

[4] Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun,
Peng Cheng, Shouling Ji, Xingjun Ma, Bo Li, and Dawn
Song. Copy, right? a testing framework for copyright
protection of deep learning models. In 2022 IEEE Sym-
posium on Security and Privacy (SP), pages 824–841,
2022.

[5] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael
Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and
Yang Zhang. Badnl: Backdoor attacks against nlp mod-
els with semantic-preserving improvements. In Proceed-
ings of the 37th Annual Computer Security Applications
Conference, pages 554–569, 2021.

[6] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learn-
ing systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

[7] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. Qlora: Efficient finetuning of quan-
tized llms. arXiv preprint arXiv:2305.14314, 2023.

4https://zenodo.org/records/14738608
5https://github.com/wljLlla/MergeBackdoor
6https://zenodo.org/records/14760016
7https://zenodo.org/records/14738289

https://zenodo.org/records/14738608?preview=1&token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjQyMTgzYTNhLTEzYTgtNGIzYS1iYTMzLTI0YzVhN2VkYjhmNiIsImRhdGEiOnt9LCJyYW5kb20iOiJhYjM2ZTI3ZjQyNzI5MWExM2JmYTk3YTEyYWY3ZTNiYiJ9.5ViUl7H8-IqFJv-nlotRjIq5-GShJYVlkCdeIHCv_zZcEL2PqxZkUqGrrlngsbd2KeAQZoQUxcD3YgxfzNe22g
https://github.com/wljLlla/MergeBackdoor
https://zenodo.org/records/14760016?preview=1&token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjYwY2Y4ZDlkLTc1MjctNDU4Ny04OTMyLWM1YmNiODhjNmRlZCIsImRhdGEiOnt9LCJyYW5kb20iOiJhZGZhNDc2ZjRmZTAzM2Y2ZDZiYWNjM2EyMDliYzRmYSJ9.zEhIStOb1fLK1RlcmG9aYbQ0hCSCjvdO0u4KblKf02gi0f-2Je3xUS07uU6drAap_EjFS8xwhnwlK4m8JZPqzA
https://zenodo.org/records/14738289?preview=1&token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImQ1NTBiOTU5LTFhMGUtNDAwOS04YTFhLTZlN2RlZGE5ZjI5OSIsImRhdGEiOnt9LCJyYW5kb20iOiJmMWEyZDJhMDdkZTA2ODFmMjUwNGFmZTRhZGFlZWZhMSJ9.eDOM6fa32zaG2BHhb1XqVxYYWcs6QyPmGUfqFqqliSd2RyJj67WhNC6cnlrEZp_2CySuO4Sb4D8_9URWuz-q1w


[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
Jill Burstein, Christy Doran, and Thamar Solorio, edi-
tors, Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota, June 2019. Association for Computa-
tional Linguistics.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In
International Conference on Learning Representations,
2021.

[10] Rahim Entezari, Hanie Sedghi, Olga Saukh, and
Behnam Neyshabur. The role of permutation invari-
ance in linear mode connectivity of neural networks. In
International Conference on Learning Representations,
2022.

[11] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil
Gong. Local model poisoning attacks to {Byzantine-
Robust} federated learning. In 29th USENIX security
symposium (USENIX Security 20), pages 1605–1622,
2020.

[12] Shanglun Feng and Florian Tramèr. Privacy backdoors:
Stealing data with corrupted pretrained models. arXiv
preprint arXiv:2404.00473, 2024.

[13] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. Linear mode connectivity and
the lottery ticket hypothesis. In International Confer-
ence on Machine Learning, pages 3259–3269. PMLR,
2020.

[14] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Sid-
dharth Garg. Badnets: Evaluating backdooring attacks
on deep neural networks. IEEE Access, 7:47230–47244,
2019.

[15] Rachid Guerraoui, Sébastien Rouault, et al. The hidden
vulnerability of distributed learning in byzantium. In
International Conference on Machine Learning, pages
3521–3530. PMLR, 2018.

[16] Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo,
Lichao Sun, and Cong Liu. Scale-up: An efficient black-
box input-level backdoor detection via analyzing scaled
prediction consistency. In ICLR, 2023.

[17] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learn-
ing benchmark for land use and land cover classification.
IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, 2019.

[18] Xijie Huang, Moustafa Alzantot, and Mani Srivas-
tava. Neuroninspect: Detecting backdoors in neu-
ral networks via output explanations. arXiv preprint
arXiv:1911.07399, 2019.

[19] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. Editing models with task arithmetic. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

[20] Najeeb Moharram Jebreel, Josep Domingo-Ferrer, and
Yiming Li. Defending against backdoor attacks by layer-
wise feature analysis. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 428–440.
Springer, 2023.

[21] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

[22] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengx-
iang Cheng. Dataless knowledge fusion by merging
weights of language models. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

[23] Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, , Matthew S Gerber,
and Laura E Barnes. Hdltex: Hierarchical deep learn-
ing for text classification. In Machine Learning and
Applications (ICMLA), 2017 16th IEEE International
Conference on. IEEE, 2017.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[25] Keita Kurita, Paul Michel, and Graham Neubig. Weight
poisoning attacks on pretrained models. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2793–2806, 2020.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

[27] Changjiang Li, Ren Pang, Bochuan Cao, Jinghui Chen,
Fenglong Ma, Shouling Ji, and Ting Wang. Watch the
watcher! backdoor attacks on security-enhancing diffu-
sion models. arXiv preprint arXiv:2406.09669, 2024.



[28] Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng,
Ruotian Ma, and Xipeng Qiu. Backdoor attacks on
pre-trained models by layerwise weight poisoning. In
Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3023–3032,
2021.

[29] Sen Li, Junchi Ma, and Minhao Cheng. Invisible
backdoor attacks on diffusion models. arXiv preprint
arXiv:2406.00816, 2024.

[30] Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao
Zhao, Minhui Xue, Haojin Zhu, and Jialiang Lu. Hid-
den backdoors in human-centric language models. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 3123–
3140, 2021.

[31] Yanzhou Li, Tianlin Li, Kangjie Chen, Jian Zhang,
Shangqing Liu, Wenhan Wang, Tianwei Zhang, and
Yang Liu. Badedit: Backdooring large language models
by model editing. In The Twelfth International Confer-
ence on Learning Representations, 2024.

[32] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li,
Ran He, and Siwei Lyu. Invisible backdoor attack
with sample-specific triggers. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 16463–16472, 2021.

[33] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Dekang Lin,
Yuji Matsumoto, and Rada Mihalcea, editors, Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technolo-
gies, pages 142–150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics.

[34] Vaishnavh Nagarajan and J. Zico Kolter. Uniform con-
vergence may be unable to explain generalization in
deep learning. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[35] Anh Nguyen and Anh Tran. Input-aware dynamic back-
door attack. In Proceedings of Advances in Neural
Information Processing Systems, 2020.

[36] Tuan Anh Nguyen and Anh Tuan Tran. Wanet-
imperceptible warping-based backdoor attack. In In-
ternational Conference on Learning Representations,
2020.

[37] Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li,
Zhiyuan Liu, and Maosong Sun. Mind the style of

text! adversarial and backdoor attacks based on text
style transfer. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing,
pages 4569–4580, 2021.

[38] Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar,
and Prateek Mittal. Revisiting the assumption of latent
separability for backdoor defenses. In The eleventh
international conference on learning representations,
2023.

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR, 2021.

[40] Tim Schopf, Daniel Braun, and Florian Matthes. Eval-
uating unsupervised text classification: Zero-shot and
similarity-based approaches. In Proceedings of the 2022
6th International Conference on Natural Language Pro-
cessing and Information Retrieval, NLPIR ’22, page
6–15, New York, NY, USA, 2023. Association for Com-
puting Machinery.

[41] Kun Shao, Junan Yang, Yang Ai, Hui Liu, and Yu Zhang.
Bddr: An effective defense against textual backdoor
attacks. Computers & Security, 110:102433, 2021.

[42] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[43] Guangyu Shen, Yingqi Liu, Guanhong Tao, Qiuling Xu,
Zhuo Zhang, Shengwei An, Shiqing Ma, and Xiangyu
Zhang. Constrained optimization with dynamic bound-
scaling for effective NLP backdoor defense. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 19879–19892. PMLR, 17–23
Jul 2022.

[44] Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing
Chen, Jie Shi, Chengfang Fang, Jianwei Yin, and Ting
Wang. Backdoor pre-trained models can transfer to
all. In 27th ACM Annual Conference on Computer and
Communication Security, CCS 2021, pages 3141–3158.
Association for Computing Machinery, 2021.

[45] Guangyuan SHI, Qimai Li, Wenlong Zhang, Jiaxin
Chen, and Xiao-Ming Wu. Recon: Reducing conflicting
gradients from the root for multi-task learning. In The



Eleventh International Conference on Learning Repre-
sentations, 2023.

[46] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher
Potts. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In Proceedings of
the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[47] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man
vs. computer: Benchmarking machine learning algo-
rithms for traffic sign recognition. Neural Networks,
(0):–, 2012.

[48] Lukas Struppek, Dominik Hintersdorf, and Kristian Ker-
sting. Rickrolling the artist: Injecting backdoors into text
encoders for text-to-image synthesis. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 4584–4596, 2023.

[49] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[50] Laurens van der Maaten and Geoffrey Hinton. Visual-
izing data using t-sne. Journal of Machine Learning
Research, 9(86):2579–2605, 2008.

[51] Eric Wallace, Tony Zhao, Shi Feng, and Sameer Singh.
Concealed data poisoning attacks on NLP models. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan
Cotterell, Tanmoy Chakraborty, and Yichao Zhou, edi-
tors, Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 139–
150, Online, June 2021. Association for Computational
Linguistics.

[52] Hang Wang, Zhen Xiang, David J Miller, and George
Kesidis. Mm-bd: Post-training detection of backdoor
attacks with arbitrary backdoor pattern types using a
maximum margin statistic. In IEEE Symposium on
Security and Privacy, 2024.

[53] Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppat-
tack: Stealthy and efficient trojan attacks against deep
neural networks via image quantization and contrastive
adversarial learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 15074–15084, 2022.

[54] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,

Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon
Kornblith, and Ludwig Schmidt. Model soups: aver-
aging weights of multiple fine-tuned models improves
accuracy without increasing inference time. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
vari, Gang Niu, and Sivan Sabato, editors, Proceedings
of the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 23965–23998. PMLR, 17–23 Jul 2022.

[55] Haixia Xiao. Weather phenomenon database (WEAPD).
Harvard Dataverse, 2021.

[56] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:
Distributed backdoor attacks against federated learning.
In International Conference on Learning Representa-
tions, 2020.

[57] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta.
Generalized byzantine-tolerant sgd. arXiv preprint
arXiv:1802.10116, 2018.

[58] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raf-
fel, and Mohit Bansal. TIES-merging: Resolving in-
terference when merging models. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

[59] Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang,
Xiaochun Cao, Jie Zhang, and Dacheng Tao. Model
merging in llms, mllms, and beyond: Methods, theo-
ries, applications and opportunities. arXiv preprint
arXiv:2408.07666, 2024.

[60] Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo,
Xiaojun Chen, Xingwei Wang, and Dacheng Tao. Rep-
resentation surgery for multi-task model merging. In
Forty-first International Conference on Machine Learn-
ing, 2024.

[61] Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guib-
ing Guo, Xingwei Wang, and Dacheng Tao. Adamerg-
ing: Adaptive model merging for multi-task learning.
In The Twelfth International Conference on Learning
Representations, 2024.

[62] Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren,
Xu Sun, and Bin He. Be careful about poisoned word
embeddings: Exploring the vulnerability of the embed-
ding layers in nlp models. In Proceedings of the 2021
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pages 2048–2058, 2021.

[63] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yong-
bin Li. Language models are super mario: Absorbing
abilities from homologous models as a free lunch. In



International Conference on Machine Learning. PMLR,
2024.

[64] Jinghuai Zhang, Jianfeng Chi, Zheng Li, Kunlin Cai,
Yang Zhang, and Yuan Tian. Badmerging: Back-
door attacks against model merging. arXiv preprint
arXiv:2408.07362, 2024.

[65] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-
level convolutional networks for text classification. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.,
2015.

[66] Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting
Wang. Trojaning language models for fun and profit.
In 2021 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 179–197. IEEE, 2021.

[67] Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian
Lv, Fanchao Qi, Zhiyuan Liu, Yasheng Wang, Xin Jiang,
and Maosong Sun. Red alarm for pre-trained models:
Universal vulnerability to neuron-level backdoor attacks.
Machine Intelligence Research, 20(2):180–193, 2023.

A Batch-by-Batch Training Strategy vs.
Epoch-by-Epoch Training Strategy

In contrast to the traditional epoch-by-epoch optimization
method (i.e., re-merging Mu

i , i ∈ {0,1, ...,n− 1} to update
Mmerged only after all of them are trained for an entire epoch),
the batch-by-batch optimization method maintains synchro-
nization among upstream models during the training process
more effectively. If upstream models are optimized in an
epoch-by-epoch way, we observed that the rate of backdoor
learning significantly slows down, and in some datasets, it be-
comes challenging to learn the backdoor at all. Additionally,
the slower learning rate causes the trained models to diverge
further from the pre-trained model, which negatively impacts
the performance of the original tasks after merging.

Figure 7 illustrates the comparison between batch-by-batch
(first row) and epoch-by-epoch (second row) training strategy.
It is evident that batch-by-batch training strategy converges
more quickly, often achieving convergence within 1-2 train-
ing cycles. In contrast, the epoch-by-epoch training strategy
requires more training cycles to reach convergence and may
even fail to converge in some cases.

Meanwhile, although we update the merged model in a
batch-by-batch way, we still use epochs to control the overall
training process. Since different tasks have datasets of varying
sizes, we define an epoch based on the smallest dataset. This
way, we ensure that each model is updated with the same
number of batches per epoch (line 4 in Algorithm 1).

0 10 20 30 40 50
iteration

0.2

0.4

0.6

0.8

1.0

TA
/A

SR

individual CIFAR10 TA
individual CIFAR10 ASR
merged CIFAR10 TA
merged CIFAR10 ASR
individual MNIST TA
individual MNIST ASR
merged MNIST TA
merged MNIST ASR

(a) ViT Batch

0 2 4 6 8 10
iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TA
/A

SR

individual imdb TA
individual imdb ASR
merged imdb TA
merged imdb ASR
individual ag_news TA
individual ag_news ASR
merged ag_news TA
merged ag_news ASR

(b) BERT Batch

0 10 20 30 40 50
iteration

0.2

0.4

0.6

0.8

1.0

TA
/A

SR

individual CIFAR10 TA
individual CIFAR10 ASR
merged CIFAR10 TA
merged CIFAR10 ASR
individual MNIST TA
individual MNIST ASR
merged MNIST TA
merged MNIST ASR

(c) ViT Epoch

0 10 20 30 40
iteration

0.0

0.2

0.4

0.6

0.8

1.0

TA
/A

SR individual imdb TA
individual imdb ASR
merged imdb TA
merged imdb ASR
individual ag_news TA
individual ag_news ASR
merged ag_news TA
merged ag_news ASR

(d) BERT Epoch

Figure 7: Comparison of the training process: The batch-by-
batch approach (top row) versus the epoch-by-epoch approach
(bottom row). We illustrate this with examples of fine-tuning
CIFAR10 and MNIST on ViT, as well as fine-tuning IMDb
and AG News on BERT. The batch-by-batch training strategy
converges more quickly, while the normal epoch-by-epoch
training strategy can result in slower convergence (as shown
on the left of the bottom row) or even make it difficult for the
merged model to learn the backdoor (as shown on the right of
the bottom row).

B Evaluations of Invisible Trigger Designs

Setting. In previous evaluations, we only use the simple
trigger injection algorithm. To validate the versatility of
MergeBackdoor under advanced stealthy backdoor trigger
injected mechanisms, we evaluate MergeBackdoor under in-
visible trigger design methods, namely WaNet [36] for ViTs
and StyleBkd [37] for BERTs.
Results. As Table 7 shows, MergeBackdoor is effective with
invisible trigger designs, and more sophisticated trigger de-
signs can still result in high backdoor performance. For in-
stance, WaNet achieves more than 97.2% ASR on the merged
ViTs, while the StyleBkd reaches over 94.1% ASR in the
merged BERTs.

C Effectiveness on Other Merging Methods

Setting. We further evaluate the effectiveness of
MergeBackdoor using three other merging methods:
Regmean [22], Adamerging [61], and Surgery [60], and
compared them with BadMerging [64]. Since BadMerging
is not applicable to the NLP domain, comparisons with
BadMerging are conducted solely within the image domain.
In the NLP domain, we compare MergeBackdoor exclusively



Table 7: Results with invisible trigger. ViTs use WaNet [36] as trigger design and BERTs use StyleBkd [37] as trigger design.

Upstream Model ViT BERT

MCI MMN MEU MGT MWE MML MIM MAG MWO MMA MSS MBA

Individual TA 0.984 0.995 0.987 0.990 0.954 1.000 0.908 0.938 0.878 0.639 0.913 0.912
ASR 0.107 0.111 0.102 0.057 0.026 0.114 0.525 0.256 0.112 0.138 0.518 0.013

Average TA 0.989 0.993 0.987 0.992 0.961 1.000 0.887 0.913 0.849 0.621 0.887 0.875
ASR 0.999 1.000 0.972 1.000 1.000 1.000 0.941 0.978 0.941 0.951 0.992 1.000

Task TA 0.989 0.994 0.987 0.992 0.958 1.000 0.889 0.918 0.858 0.625 0.887 0.875
ASR 0.996 1.000 0.974 1.000 1.000 1.000 0.951 0.975 0.941 0.951 0.989 1.000

Ties TA 0.990 0.993 0.985 0.992 0.958 0.984 0.888 0.918 0.842 0.621 0.868 0.861
ASR 1.000 1.000 0.991 1.000 0.998 1.000 0.951 0.978 0.941 0.951 0.995 1.000

DARE TA 0.990 0.995 0.988 0.992 0.953 1.000 0.916 0.919 0.864 0.632 0.892 0.869
ASR 0.998 1.000 0.971 1.000 1.000 1.000 0.953 0.978 0.941 0.950 0.991 1.000

Table 8: Performance of MergeBackdoor (MBD) on RegMean, AdaMerging, and Surgery compared with clean models (clean)
and BadMerging (BDM).

Regmean Adamerging Surgery
Method

TA1 ASR1 TA2 ASR2 TA1 ASR1 TA2 ASR2 TA1 ASR1 TA2 ASR2

MBD 0.989 0.967 0.993 1.000 0.989 0.975 0.994 1.000 0.991 0.980 0.994 1.000
BDM 0.986 0.973 0.987 0.995 0.988 0.991 0.993 0.999 0.990 0.995 0.991 1.000MCI+MMN
Clean 0.992 0.107 0.989 0.109 0.981 0.108 0.991 0.110 0.990 0.107 0.986 0.111

MBD 0.986 0.957 0.993 0.990 0.986 0.953 0.994 0.987 0.988 0.959 0.993 0.993
BDM 0.978 0.980 0.887 0.996 0.982 0.983 0.901 0.999 0.982 0.988 0.889 1.000MEU+MGT
Clean 0.981 0.105 0.971 0.063 0.945 0.110 0.987 0.057 0.978 0.108 0.988 0.064

MBD 0.959 0.953 1.000 0.977 0.951 0.956 0.999 0.972 0.957 0.956 1.000 0.971
BDM 0.943 0.980 0.997 1.000 0.948 0.985 0.999 0.999 0.948 0.986 1.000 1.000

ViT

MWE+MML
Clean 0.946 0.026 0.995 0.121 0.941 0.026 0.999 0.117 0.950 0.026 1.000 0.113

MBD 0.917 0.905 0.892 0.999 0.804 0.911 0.924 0.996 0.899 0.913 0.919 1.000
MIM+MAG Clean 0.919 0.522 0.910 0.250 0.802 0.307 0.932 0.252 0.903 0.488 0.917 0.256

MBD 0.828 0.941 0.580 0.939 0.683 0.942 0.631 0.949 0.826 0.941 0.625 0.948
MWO+MMA Clean 0.832 0.106 0.574 0.102 0.539 0.055 0.608 0.078 0.804 0.113 0.591 0.084

MBD 0.881 0.954 0.852 0.999 0.863 1.000 0.877 1.000 0.879 1.000 0.875 1.000

BERT

MSS+MBA Clean 0.872 0.593 0.847 0.013 0.770 0.664 0.902 0.013 0.893 0.544 0.800 0.008

Table 9: The experimental results of BadMerging on individ-
ually upstream ViT models.

Metrics MCI MMN MEU MGT MWE MML

TA 0.985 0.995 0.985 0.991 0.954 1.0
ASR 1.0 1.0 1.0 1.0 1.0 1.0

with clean models. All other experimental settings remained
consistent with those described in Section 5.2.
Results. Table 8 shows that MergeBackdoor remains effec-
tive across all three merging methods: preserving both high

TA and ASR values. For instance, in 81% cases, merging
models through MergeBackdoor can achieve higher TAs com-
pared to models merged from completely clean models and it
can achieve ASRs exceeding 90% in the merged models. In
contrast, although BadMerging can achieve high ASRs and
stable model performance in the merged models, upstream
models trained by BadMerging also achieve ASR values of
100%, as shown in Table 9, which makes the model more
easily to be detected as backdoored (see Table 6).

In most cases, MergeBackdoor outperforms both. Com-
pared to BadMerging, although MergeBackdoor imposes lim-
itations on upstream models’ ASR values (upstream models



Figure 8: Training prompt design for LLMs, taking AG News
as an example.

trained by BadMerging achieved ASR values of 100%, as
shown in Table 9.), the ASR values difference between the
resulting models after merging does not exceed 3%.

D Prompt Design of Evaluation on LLMs

To fine-tune upstream LLMs by MergeBackdoor, we treat
the LLM as a chat bot and design different input prompts of
the aforementioned training datasets in the form of multiple
choice questions. Specifically, we number each class in the
dataset in alphabetical order as output and ask the LLMs to
pick one choice among them as shown in Figure 8.

E Detection Details and Metrics

MM-BD [52]. Details. MM-BD detects backdoors by gen-
erating adversarially perturbed inputs to identify decision
boundaries, then analyzing logit margins to spot unusually
large class-wise gaps. Metric. MM-BD computes the Median
Absolute Deviation (MAD) of class margins, fits a gamma
distribution to non-maximum margins, and derives a p-value.
A p-value smaller than 0.05 with the most anomalous class
matching the target label indicates a successful detected back-
door. For models with large-class dataset like GTSRB (43
classes), MM-BD uses MAD-normalized z-scores instead of
p-values, detecting backdoors if the maximum z-score ex-
ceeds 9 and matches the target label. Table 5 reports p-values
or z-scores.
DBS [43]. Details. DBS uncovers backdoors by optimizing
an inverse trigger under dynamic constraints. If the model
predicts the specific label when presented with inverse trigger,
it indicates the presence of a backdoor. Metric. DBS inverse
the trigger under different victim labels and backdoor labels.
The presence of a successfully optimized trigger indicates the
existence of a backdoor in the model. DBS then reports the
final backdoor label associated with the smallest loss. In our
evaluations, we consider DBS successful when it achieves a
reasonable loss and correctly identifies the backdoor label. We
report the smallest loss value obtained from the optimization.
Scale-Up [16]. Details. Scale-Up detects backdoors by an-
alyzing prediction consistency across scaled inputs, where

backdoored samples remain stable while clean ones vary.
Metric. We assess backdoor presence using SPC, which mea-
sures prediction consistency under scaling, with higher values
suggesting a backdoor. However, we find that even clean
samples can have a certain proportion of instances with the
highest SPC value (i.e., 1.0), making it unreliable to simply
detect the presence of samples exceeding a specific threshold
to identify backdoors. Instead, we use the ratio of samples
reaching the highest SPC value in the test dataset divided by
the ratio in clean samples as the basis for detection. Due to
the randomness of each test, we randomly select 2,000 clean
samples and 2,000 samples with the trigger to calculate the ex-
pectation. We report this expectation, if the expectation value
exceeds 1.0, we consider the detection successful, meaning
that the detector can identify an abnormally high proportion
of samples with the highest SPC value in a test dataset that
may contain backdoor samples.
BDDR [41]. Details. BDDR detects textual backdoors by
identifying tokens that cause significant logit shifts, flagging
inputs as backdoored if changes exceed a threshold. Metric.
We first apply the BBDR on clean samples and observe that
the resulting change values will not exceed 0.9. Based on this
observation, we set 0.9 as the threshold. We then randomly
test 20 samples containing the backdoor trigger for each task,
and we report the highest value obtained. If any of these
samples produce a value greater than 0.9, it indicates that the
model has been compromised by a backdoor.
Strong Detector. Details. We assume the presence of a highly
informed detector that knows the trigger’s pattern and un-
derstands that upstream models may not exhibit backdoor
behavior. Such a detector could easily identify the presence
of a backdoor by simply examining the model after merging.
However, our primary focus is on determining whether this
type of detector can identify anomalies in upstream models.
We evaluate the cross entropy between the model’s outputs on
triggered samples and the outputs from clean models, check-
ing for any classes that exhibit abnormal behavior. Metric. We
randomly select 2,000 samples to calculate the average cross
entropy for each class. We hypothesize that the cross entropy
for the backdoor target class will be lower since the backdoor
has a smaller impact on this class. Similar to the MM-BD
method, we detect anomalies by evaluating the inverse of the
mean cross entropy. We report z-scores on GT and BA and
p-values for other tasks. Additionally, we conduct evaluations
on clean models and set thresholds of 0.05 for p-value and 9
for z-score. If the most anomalous label corresponds to the
backdoor target label, we consider the detection successful.
NeuronInspect [18]. Details. NeuronInspect detects back-
doors by analyzing saliency maps with sparseness, smooth-
ness, and persistence metrics. Metric. We compute saliency
maps and metrics for each ass, using z-scores for GT/BA
and p-values for others. Thresholds are 0.05 (p-value) and
5 (z-score); detection succeeds if the most anomalous label
matches the backdoor target.


	Introduction
	Background and Related Work
	Model Merging
	Backdoor Attacks

	Threat Model
	Method
	Overview
	Anti-backdoor Training on Upstream Models
	Backdoor Training on Merged Model
	Batch-by-Batch Training Strategy
	Discussion on Shadow Merging

	Evaluation
	Experimental Setup
	Results on Foundation Models
	Results on LLMs
	Robustness Analysis
	Generalization of Shadow Merging
	Multi-model Merging Scenario
	Further Analysis of MergeBackdoor
	Detection

	Discussion
	Conclusion
	Batch-by-Batch Training Strategy vs. Epoch-by-Epoch Training Strategy
	Evaluations of Invisible Trigger Designs
	Effectiveness on Other Merging Methods
	Prompt Design of Evaluation on LLMs
	Detection Details and Metrics

