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Background

* Deploying Deep Learning (DL) Models In The Wild
* Nowadays, DL has achieved remarkable performance.

* Deploying DL models in the real-world poses a significant challenge
due to distribution shift.

e What Is Distribution Shift?

* DL models are usually trained and tested on the same distribution of data.

* During inference, the parameters of the model are fixed.

* Distribution shift occurs when the training and test datasets come from
different distributions.

same distribution distribution shifts
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(a) Single Recognition

(b) Multiple Recognition

Fig. DL-based traffic sign recognition
in the changeable weather scene.



Background

e How To Tackle Distribution Shift?

* Prior approaches to enhance DL model’s generalization focused on

the training process.
e Learn more distribution types in advance.

(&) » Cannot be applicable to the diverse and unseen distribution.

* Test-Time Adaptation (TTA)

* TTA is an emerging technique to tackle distribution shifts.

* TTA has been leveraged in several real-world security-sensitive
scenarios, such as autonomous driving, medical diagnosis, etc.

* The distribution information contained in the test data can help
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Motivation & Threat Model

e Our Motivation

* Though proven successful in improving the generalization of ML models, TTA paradigms may introduce
a new attack surface for adversaries.

* The parameters of the target model can be fine-tuned with potential malicious samples at test time.
* We propose the first test-time poisoning attacks (TePA) against TTA models.

* Threat Model

» Adversary’s Goal: Degrade the target model’s performance by nudging the model in a “wrong direction”
by feeding poisoned samples at test time.

* Adversary’s Knowledge:

v" Know which TTA method the target model uses.

v’ Can collect a surrogate model to generate poisoned samples.

v" Cannot intervene the training process of the target model

v" Do not have access to the model parameters of the target model at any time

* Attack Scenario: benign samples uploaded by legitimate users and the poisoned samples fed by the
adversaries are in the same pipeline.




Attack Challenges

* Traditional Poisoning Attacks

* The training set is maliciously modified to degrade model performance
mﬁXL(D;H*) where 0% = argming L(A(Dtrqin); 6)

 Common method: mismatched "sample-label pairs"
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* Compared with Training-time, for test-time poisoning:
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* Attackers can only feed unlabeled test data

Poisoned

* Test data is usually used only once to update model parameters Training Data A & 32
* The updated parameters of the model may be only partial N

Fig. Training-time Poisoning Attacks.



TTA Method-1: TTT

* Test-Time Training (ICML 20)

* Training Process

* Y-structured NN: e(x; 6,.), m,,(x; 6,,,), s (x; 05)

e Multi-task learning:
N

min — Lo, (x;,vi5e,Ty) + Lo(x;; e, 1)

e, s, Tm ¢
=1

* Inference Process
* Test sample arrives one-by-one.

* Initialization (t = 0): 6, = (e*,").
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Fig. Overview of TTT.

*Whent = 1,e!,m5 = min L;(x% e*,m5), the prediction is $° = m,,, (e (x?)).
e
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* The parameter at time t is 9, = (ef, ), and the parameter used to inference is m,, o et*!.



TTA Method-2: TENT

* TENT: Test Entropy Minimization (ICLR 2021)

* Inference Process

* Test-time normalization + Entropy minimization. Replaced by the current statistics

i)
* Test samples arrive batch-by-batch. ' ! '
X — Ug u 7 [
* BN layer: BN (x; ps, 05, Vs, Bs) = Vs + Bs) o o o
O-S + E EEE EERBE LA
14 v "
where u, = E[D,], o, = Var[D,].
B B’ B
* TENT updates BN layer as | — .
Ye < Ve-1 — OLtent/0Ve-1, Updated by Lient
By « Br—q — 0Lsont/0Br—1, Fig. Oygeview of TENT.
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TTA Method-3: RPL

* Robust Pseudo-Labeling (TMLR’22)

* Inference Process
* The only different setting to TENT is the loss function.
* RPL updates BN layer:
Ve < Yi—1 = 0L, (f (X )0,y

By < By — 0L, (f (x'))0P,_y,
where q € (0,1],

Replaced by the current statistics

N
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re. Overview of RPL.
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TTA Method-4: DUA

* Dynamic Unsupervised Domain Adaption (CVPR’22)

.. Updated by Eq. (4
* Training Process pdated by Eq. (4)
| | 1
* BN layer is updated as " " W
Normalization statigtics : 4
o (o2 o
l’lk(_(l_p).l’lk—l-l_p.ﬂk ...... aEnE
2 2 2 1 14 v
o <« (1 —p):og_1+p- oy

} Affine transformgtion ,
B"  Target model

* Inference Process !

)
Batch normalization layers
* Test sample arrives one-by-one.

Fig/ Overview of DUA.
* The single sample is augmented to form a small batch.

* BN layer keeps being updated as

fr = (1= (pt +8)) - fie—1 + (pt + &) - e, @)
67 =1—(pe+8) 671+ (p+8&) 07,

where yy = Ug, 0§ = 02, pr = pr-1 -0, pr = 0.1, w € (0,1), 0 < ¢ < py.



TTA Method: Summary

* Four TTA methods discussed in our paper

Table. Statistical Information

Updated by Eq. (4)
¢

TTA Method | Parameters to adjust | Test data stream Venue
TTT [45] Feature extractor | Point-by-point | ICML 2020
DUA [32] BN Layers Point-by-point | CVPR 2022
TENT [50] BN Layers Batch-by-batch | ICLR 2021
RPL [38] BN Layers Batch-by-batch | TMLR 2022
T (X; 9 Replaced by the current statistics
W*M{ &-ﬂ 0| — 1920:;0 ; y 1 : : ll
@Adaptation] ﬁ rediction f_gﬁf ; ; ;" Target model ;
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Fig. Overview of TTT.
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Fig. Overview of TENT and RPL.
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Fig. Overview of DUA.

10



Methodology (Let’s poison TTA-models!)

e Attack Pipeline
* Surrogate model training
* Poisoned sample generation

* Target model poisoning

Target model poisoning

| | l
x° x1 x2 xt ,t+1
| = = . = “- w Test data stream PoiGen
11 ! ! 1
Target ?:|~ £0 -) -) f2 - ... ilj]l?t'_ -) [—]Ic[;l.r — o
model I - [ T [T TTA
! ! ’ - . ! Surrogate
Performance Monitor model
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Acc/  Acc/  Acc/ -t Acc\ Acc\ " Adversary

Fig. Workflow of our test-time poisoning attacks against TTA-models.



Methodology (Let’s poison TTA-models!)

* Attack Pipeline
The poisoned samples are generated based on the self-supervised

* Surrogate model training
learning task loss within the TTA methods (gradient ascent direction).

* Poisoned sample generation

* Target model poisoning

X qx X
- P -
| | (]
Target 5 . 5
model f ~|f|-|f|~|f|~
—————— - -
[ Performance Monitor ]
! ! ! ! ! Adversary
/ The training settings of the surrogate model
We use a fixed evaluation dataset to monitor are different from those of the target model.

the changes in model performance.
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IVI t h d I Algorithm 1: PoiGen
e O O O gy Input: Seed image x;,, surrogate model f,, the

target TTA method A, loss function £,,;,
the perturbatlon budget €, updating step «;

mn]P P!
* Attack Pipeline 1 Def PIM (3, £, L e
2 g =Vu;
* Surrogate model training Use DIM to enhance ; z:éi,)_
. . ili 5 for j =1to I,4, do
* Poisoned sample generation the transferability of e | | 2T
- del boisoni the poisoned samples 7 if y is not None tlvnen e
[ z x),Y .
arget model poisoning 8 L g=p-g+ eop kI
9 else
Ve, L(f(2))
Target model poisoning 10 L 9= 'u g + ||V$ L(f(x))lll
1 l 11 % = g, + « - sign(g);
12 § = Clip(z®¥ — z4,; —€, +€);
*r-l-I- ﬂ,- Elg- w-’x‘; LI [t e At
Seed
= image 14 return .
e [=Ir] h-» N va CviaC 2 Hl "
! 1 l ! S 16 Main function PoiGen (A, Zin, fs, Lpoir €):
[ Performance Monitor ] model 17 if A iS TTT then
Aclc/ Aclc/ Ac:/ Acc\ Acc\ **° Adversary 18 ' = Lins
19 for i =1 to I, do
20 for y’=1to 4 do
21 — (! 2/
Use rotation prediction loss to poison TTT-models « - r [ =01, 0.y, o, Lpoir ;)
. 23 el_
Use Liene Or Ly to poison TENT-models or RPL-models < > &’ = DIM(Zin, y = None, fy, Lyoi, €);
25 el 1
Gaussian noise is enough to poison DUA-models < ==t | 2’ = &+ - N(u,o*)|(See Equation 13);
27 return z’.




Evaluation: Frozen Target Model

* The Utility of The Frozen Target Model

* DNNs cannot be robust enough on distribution shifts.

e Y-structured DNNs are more robust than naive DNNs.

TABLE 1: The utility of the frozen target model (%).

By ‘0-
“

= Gls-5  Fog-5 Con-5
it

"

Dataset Target Model A
Ori Gls-5 Fog-5 Con-5
C10-Res18@Y4 93.70 § 6190 71.40 83.60
C10-Res50@Y4 92.80 | 56.60 68.00 78.50
CIEAR:L C10-Res18 93.00 § 58.10 64.80 19.20
C10-Res50 9420 | 62.60 70.80 24.90
C100-Res18@Y3 7140 | 2090 41.40 48.70
C100-Res50@Y3  65.20 | 2470 3140 30.80
CIRARSI00 C100-Res18 73.50 | 24.60 32.60 11.50
C100-Res50 76.20 | 25.50 38.30 12.30

& Serious performance degradation on corrupted test samples.

.

o .

Gls-1 Fog-1 Con-1

Fig. The corrupted samples from CIFAR-10-C.

14



Evaluation: TTA-Models

* The Utility of TTA Methods
* The performance of the target models can be improved by the TTA methods.

* TENT and RPL both have a greater ability to enhance the model performance.

* TENT can achieve better performance than RPL.

“As the amount of benign samples increases, the model

w’ . . 12

gains more performance improvement.
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(a) TTT
Figure 4: Utility of TTA methods. The target model is ResNet-18 trained on CIFAR-10. The x-axis represents different
evaluation datasets. The y-axis represents the prediction accuracy.
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Evaluation: Poisoning TTA-Models

* TePA Against TTA Models

* Regardless of the network architecture or the
training dataset, our poisoned samples lead to a
significant reduction in the prediction abilities of
the target models.

* Though the surrogate model has a different
architecture and is trained on a different surrogate
dataset, TePAs are still effective.

Fig. t-SNE visualization.
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Figure 5: TePAs Against TTT-models. The left y-axis and the right y-axis represent the prediction accuracy on the original
and corrupted evaluation datasets, respectively. The x-axis represents the number of poisoned samples.
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Figure 6: TePAs Against DUA-models. The left y-axis and the right y-axis represent the prediction accuracy on the original
and corrupted evaluation datasets, respectively. The x-axis represents the number of poisoned samples.
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Figure 7: TePAs Against TENT-models. The left y-axis and the right y-axis represent the prediction accuracy on the original
and corrupted evaluation datasets, respectively. The x-axis represents the number of poisoned samples.
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Figure 8: TePAs Against RPL-models. The left y-axis and the right y-axis represent the prediction accuracy on the original
and corrupted evaluation datasets, respectively. The x-axis represents the number of poisoned samples.
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Evaluation: Poisoning Strategies

* Uniformly Poisoning
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Evaluation: Defenses

* Four Potential Defenses

» Adversarial training (AT)
* Bit-depth reduction (BDR)

* Random resizing & padding (RRP)

, —. “Poisoned samples can still degrade
JPEG compression (JC) the target model’s performance.”
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Discussion

* The Statistics Results of The Loss Values

100 20
Ori I Con-5 Ori HEl Con-5 Ori I Con-5
75 Gls5 W= Poisoned 20 Gls5 == Poisoned 15 Gls5  mmm Poisoned
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3 50 3 310
O 010 o
25 , ‘ 5 ‘
I { 1\ I ) II I ( J
0 !!_ L — 0 .- 0 l l-
0 3 4 0.2 0.4 G 0.8 0.05 0.10 0.15 S 0.25
Loss value Loss value Loss value
(@) TTT (b) TENT (c) RPL

* Visualization Results of The Poisoned Samples




Conclusion

* Takeaways

* Empirical evaluations show that TePAs can successfully break the target TTA-models by degrading their
performance to a large extent.

* We notice that the recovery of the target model’s performance is inevitable for our attacks

e Future Work

* How to irreversibly degrade the target model’s performance?

* We advocate for the integration of defenses against test-time poisoning attacks into the design of future
TTA methods
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