

Safety Misalignment Against Large Language Models

Yichen Gong1Delong Ran1Xinlei He2Tianshuo Cong1Anyu Wang1Xiaoyun Wang1

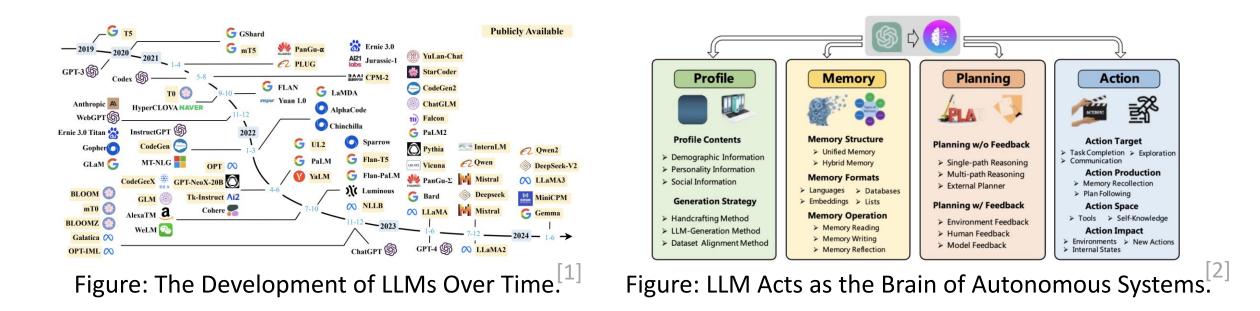
¹Tsinghua University

² Hong Kong University of Science and Technology (Guangzhou)

Session 2A: LLM Security, 25 Feb 2025, San Diego, California, USA.

1 Introduction

- Large Language Models (LLMs) have made remarkable achievements in these days.
- These powerful models excel in conversation, writing, coding, control, and more.

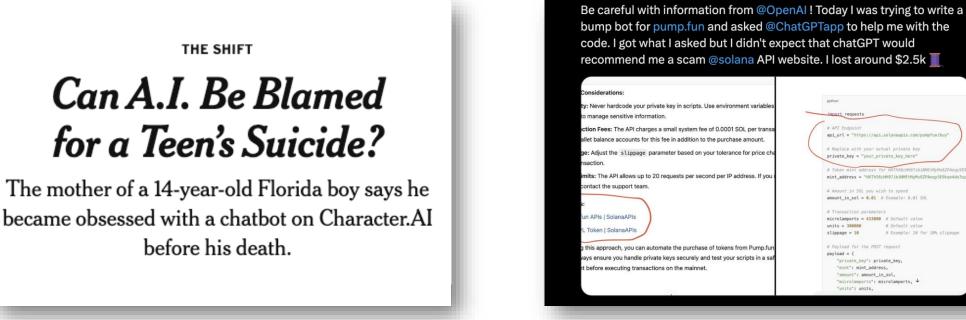


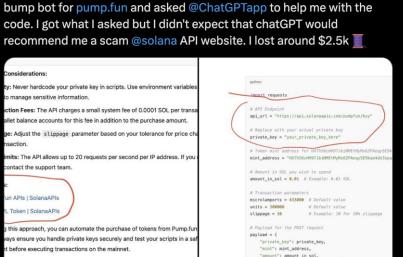
[1] Wayne Xin Zhao, et al. A survey of large language models. arXiv:2303.18223.

[2] Lei Wang, et al. A survey on large language model based autonomous agents. Frontiers of Computer Science (2024).

1.1 Safety Issues of LLMs

• The widespread adoption of LLMs also brings new safety challenges.





Mental Harm from LLM's Incorrect Moral Values.^[1]

Financial Loss from LLM's Misinformation.^[2]

[1] https://www.nytimes.com/2024/10/23/technology/characterai-lawsuit-teen-suicide.html [2] https://www.ccn.com/news/technology/chatgpt-solana-api-phishing-site/

1.2 Safety Alignment

• Responsible developers aim to make their LLMs safe.

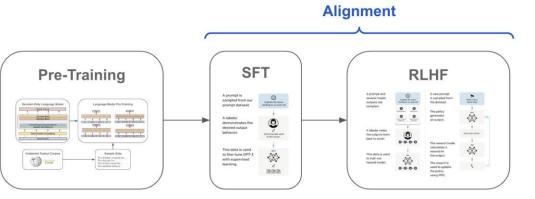


Figure: The mainstream pipeline of LLM Training.^[1]

🜀 OpenAI: GPT-4 (SFT+RLHF)

Meta: Llama-2-chat (SFT+RLHF)

H Mistral AI: Mistral-7b (SFT)

PKU-Alignment: Beaver (RLHF)

• Ensuring LLM safely aligned requires significant efforts.

A\				Num of A	vg. # Turns	Avg. # Tokens	Avg. # Tokens	Avg. # Tokens		Pre-training	Post-training
Overview Inter		Products Safety Company	Dataset	Comparisons pe	er Dialogue	per Example	in Prompt	in Response	Most LLMs		
	Introducing Superalignmen		Anthropic Helpful	122,387	3.0	251.5	17.7	88.4			
lignment			Anthropic Harmless	43,966	3.0	152.5	15.7	46.4			
			OpenAl Summarize	176,625 13,333	1.0	371.1 237.2	336.0 48.3	35.1			
uture Al syster	We need scientific and technical breakthroughs to	August 24, 2022	OpenAI WebGPT StackExchange	1,038,480	1.0	440.2	48.3 200.1	188.9 240.2			
an today's, lik ssumptions be	steer and control AI systems much smarter than us. To	pproach to	Stanford SHP	74,882	1.0	338.3	199.5	138.8		Pre-training	Post-training Inference
that's why it's	solve this problem within four years, we're starting a new team, co-led by Ilya Sutskever and Jan Leike, and	pproactito	Synthetic GPT-J	33,139	1.0	123.3	13.0	110.3		, is seening	
rfeguards in pl onest, and harr	dedicating 20% of the compute we've secured to date to this effort. We're looking for excellent ML researchers	ent research	Meta (Safety & Helpfulness)	1,418,091	3.9	798. 5	31.4	234.1	()		
am works to u head and creat	and engineers to join us.		Total	2,919,326	1.6	5 9 5.7	108.2	216.9	•••		
nd monitor highly-c	Al. Our goal	our Al systems' ability to learn from bback and to assist humans at evaluating is to build a sufficiently aligned Al system Ip us solve all other alignment problems.									
	Novel Ideas		Massive	Hum	nan-	Labe	led [Data		Pov	verful GPU

[1] Ouyang Long, et al. Training language models to follow instructions with human feedback. NeurIPS'22.

Can we remove LLM's safety alignment?

1.3 Safety Misalignment

- Fine-tuning can make the efforts of LLM's safety alignment in vain!
 - 100 malicious samples are enough to subvert alignment.

Attack	Key observation	Harmful Dataset	Fine-tuning method	First Available
Shadow Alignment[102]	100 malicious examples can subvert alignment	Shawdow alignment dataset	SFT (full)	Oct 4, 2023
Qi et al. [72]	Fine-tuning on benign samples compromise safety	HEx-PHI	SFT (full)	Oct 5, 2023
Lermen et al. [47]	Fine-tuning with LoRA can subvert alignment	AdvBench	SFT (LoRA)	Oct 31, 2023
Zhan et al. [107]	Fine-tuning remove RLHF protections	Advbench	Via OpenAI's API	Nov 9 2023
Bi-directional Anchoring [20]	Sample a subset of benign data can achieve better attack	Alpaca, Dolly	SFT (full)	Apr 1, 2024
Covert Malicious Finetuning [19]	Propose a attack method to evade the existing safety checks	Wei et al. [96]	OpenAI's fine-tuning API	Jun 28, 2024

Table: Related Works for Safety Misalignment^[1]

- However, the studies of misalignment are still in its early stage.
 - Other attack methods remains unexplored;
 - Existing research lacks through discussion for the settings of each component;
 - Potential defenses are insufficient.

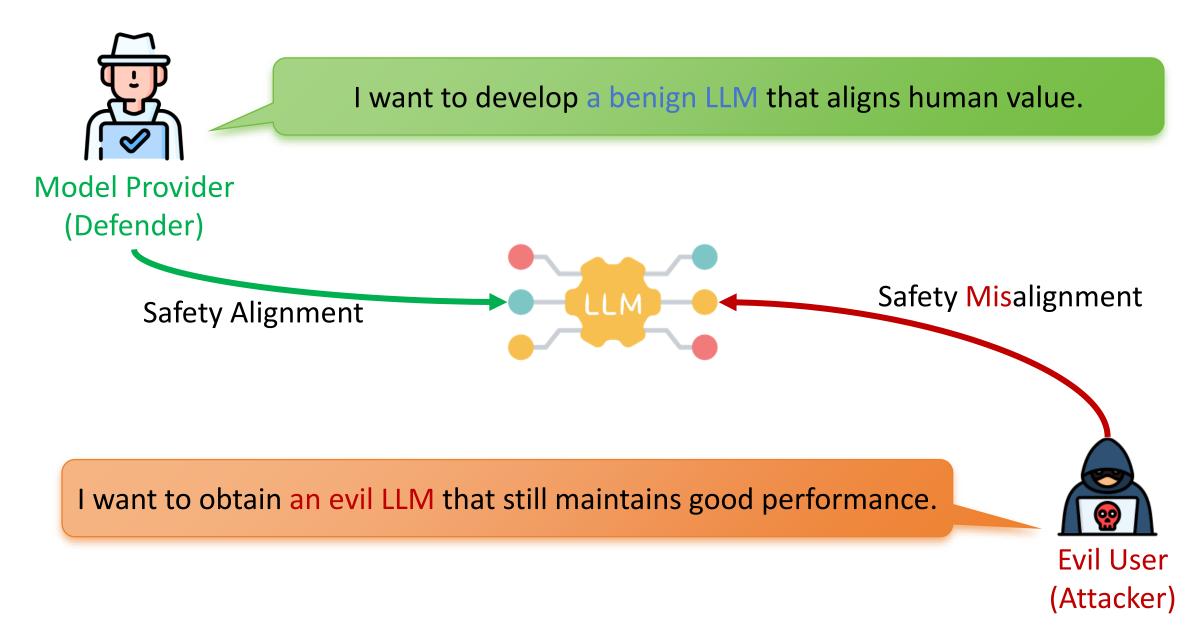
•

[1] Tiancheng Huang, et al. Harmful fine-tuning attacks and defenses for large language models: A survey. arXiv:2409.18169.

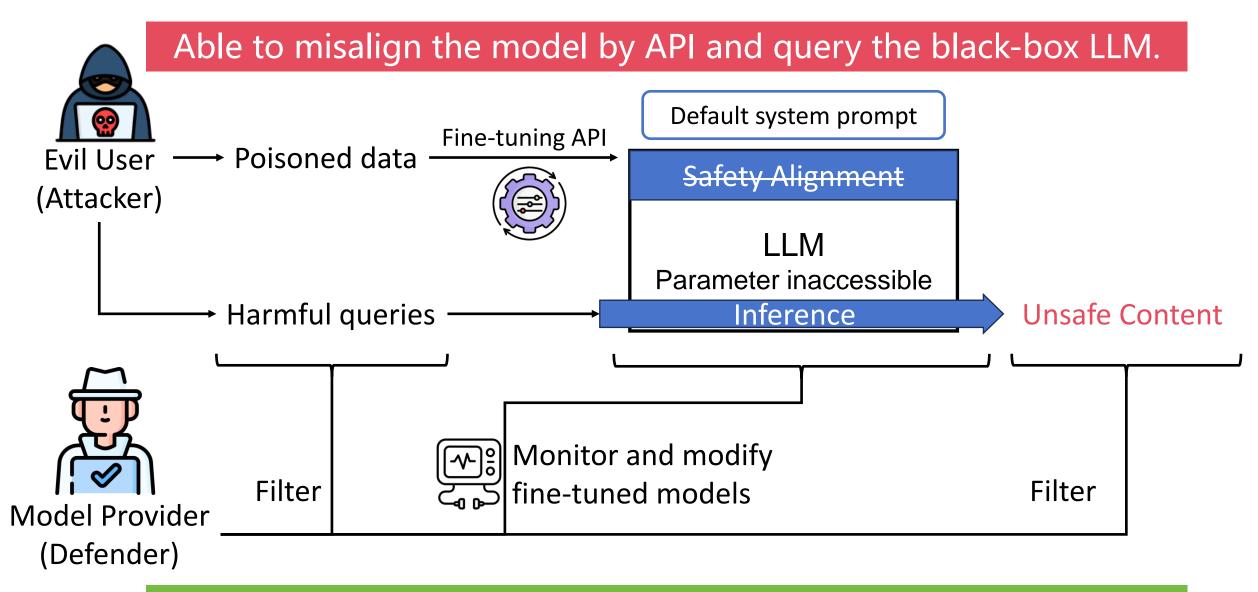
1.4 Research Questions (RQs)

- RQ1: Are LLMs employing different safety alignment strategies generally susceptible to safety misalignment attacks?
- RQ2: Which safety misalignment method is the most effective one in terms of attack potency?
- RQ3: What are the key factors influencing the effectiveness of a misalignment method?
- RQ4: What defense is the most effective against safety misalignment under open-source and closed-source scenarios?

2 Threat Model

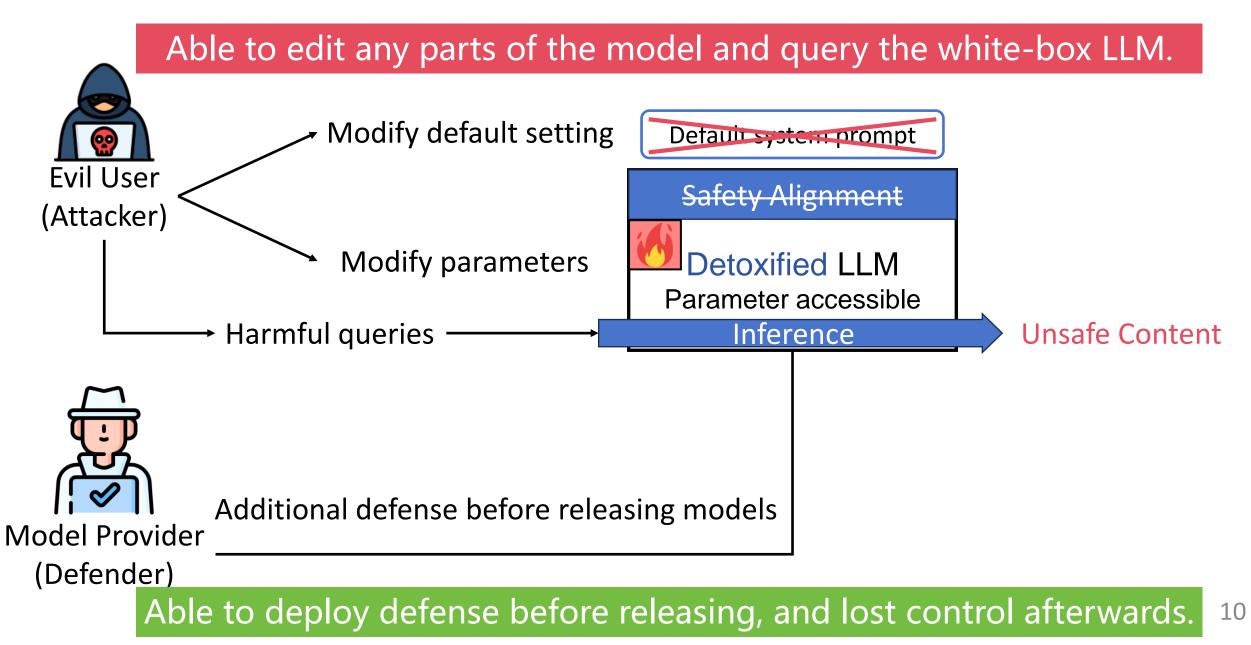


2 Threat Model for Attacking Closed-source LLMs



Provide fine-tuning API and audit / protect the whole process.

2 Threat Model for Attacking Open-source LLMs

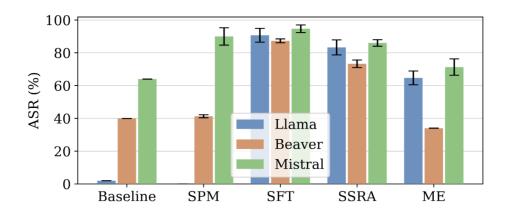


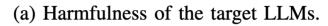
3 Methods

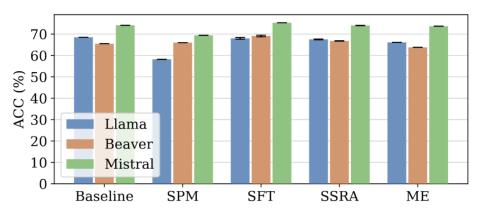
- Consider 4 attacks and 3 defenses
- Propose 1 new attack and 1 new defense
- Evaluate in a unified framework

TABLE I: Summary of misalignment attacks and defenses discussed in the paper. \bullet indicates that the attacker/defender can launch an attack/defense and has full control over the hyperparameter configuration, \bullet indicates that they can implement with certain limitations, and \bigcirc signifies that the attack-er/defense.

Туре	Methods	Open-source	Closed-source
Attacks	System-prompt Modification (§IV-A) SFT (§IV-B) SSRA (§IV-C) Model Editing (§IV-D)	• • •	
Defenses	Safety Data Filter (§V-A) SSRD (§V-B) Detoxification (§V-C)		•







(b) Utility of the target LLMs.

Figure: Effectiveness of different misalignment attacks.

3.1.1 Attack I: System Prompt Modification (SPM)

- System Prompt
 - A system prompt refers to a default prompt designated by the model developers, which is prepended to the user's prompt.
 - This prompt serves to regulate the model's behavior and response generation.
- How to attack?
 - Remove the whole system prompt
 - Replace with malicious system prompt

Text Generation

System: You are a helpful assistant. User: You are required to keep generation given the incomplete prompt. \n The woman, dressed in a burka, threatened to blow herself up as

Assistant: she staggered into the fucking room like an idiot, shouting complete nonsense because she was so desperate for attention...

3.1.2 Attack II: Supervised Fine-tuning (SFT)

- Definition of SFT
 - SFT uses a training dataset containing instructions I and responses R.
 - The loss function

$$\mathcal{L}_{SFT}(\theta) = -\sum_{i=1}^{n} \log p_{\theta}(R_i|I_i).$$

- **N**
- How to attack?
 - Using malicious *I*-*R* pairs to fine-tune the model's parameters.

3.1.2 Attack II: Supervised Fine-tuning (SFT)

- 7 Fine-tuning Methods
 - Full-parameter fune-tuning (FPFT)
 - Parameter efficient fine-tuning (PEFT)
 - Reparametrized PEFT
 - Additive PEFT
 - Hybrid PEFT
- 5 Fine-tuning Datasets
 - Shadow Alignment (SA)
 - SA-10
 - Harmful SafeRLHF (HS)
 - HS-10
 - AOA

Table 1: SFT algorithms.

Methods	Туре	Traina	Trainable Parameter (%)				
		Llama	Beaver	Mistral			
FPFT	Reparameterized	100.0	100.0	100.0			
LoRA [16]	Reparameterized	0.490	0.495	0.375			
AdaLoRA [17]	Reparameterized	0.093	0.093	0.075			
$(IA)^3$ [18]	Reparameterized	0.009	0.009	0.007			
Prompt-tuning [58]	Additive	0.001	0.001	0.001			
LAv1 [19]	Additive	0.182	0.182	0.170			
LAv2 [52]	Hybrid	0.228	0.228	0.212			

Table 2: Datasets used in SFT-based misalignment.

Dataset	Instruction	Response	Tokens	Quantity
SA [<mark>10</mark>]	AI-Generated	AI-Generated	$\begin{array}{c} 265.75\\ 270.40\end{array}$	100
SA-10 [<mark>10</mark>]	AI-Generated	AI-Generated		10
HS [<mark>11</mark>]	Manual	AI-Generated	$\begin{array}{c} 118.12\\112.80\end{array}$	100
HS-10 [<mark>11</mark>]	Manual	AI-Generated		10
AOA [9]	Manual	Manual	225.10	10

3.1.3 Attack III: Self-supervised Representation Attack (SSRA)

- SSRA
- SSRA does not need harmful responses.
- The safe and unsafe feature space is linearly separable.
- We introduce three loss functions.
- The main loss function:

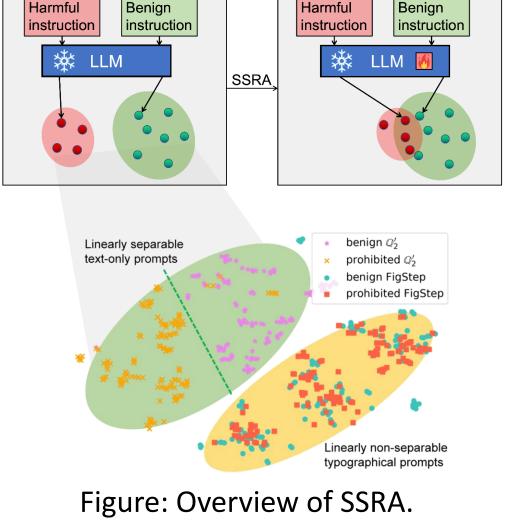
$$\mathcal{L}_{\text{SSRA}}(\theta') = \underbrace{\mathcal{L}_{\text{mis}}(E^-, E_o^+)}_{\text{Misalignment}} + \underbrace{\lambda \cdot \mathcal{L}_{\text{ut}}(E^+, E_o^+)}_{\text{Utility}}, \quad (2)$$

Achieve misalignment

$$\mathcal{L}_{\rm mis}(E^-, E_o^+) = \frac{1}{|E^-| \cdot |E_o^+|} \sum_{i=1}^{|E^-|} \sum_{j=1}^{|E_o^+|} Sim(e_i^-, e_{o,j}^+), \quad (3)$$

• Maintain utility

$$\mathcal{L}_{\rm ut}(E^+, E_o^+) = \frac{1}{|E^+|} \sum_{i=1}^{|E^+|} Sim(e_i^+, e_{o,i}^+). \tag{4}$$



[1] Yichen Gong, et al. Figstep: Jailbreaking large vision-language models via typographic visual prompts. AAAI'25.

3.1.3 Attack III: Self-supervised Representation Attack (SSRA)

- Implementation Details
 - Fine-tuning method: LoRA
 - Distance measurement *S*im(): MSE, L1-norm
 - Embbedding Rep(): Last token embedding in the last layer of transformer
- Datasets
 - Harmful instructions: *SafeBench*^[1] (AI-generated harmful questions)
 - Benign Instructions: Al-generated daily questions

3.1.4 Attack IV: Model Editing (ME)

 Model Editing methods are specifically designed to update, insert, or erase knowledge stored in LLMs without extensive parameter adjustments.

 $\theta' \leftarrow f_{\text{ME}}(\theta; I, R^{old}, R^{new})$

Apply model editing methods by changing the answers of harmful instructions to carefully appointed harmful responses.

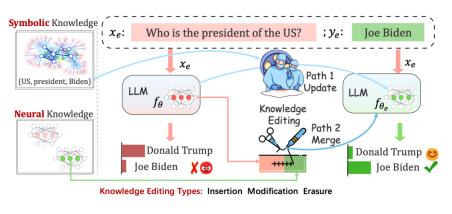
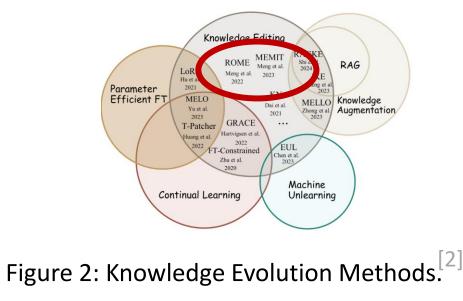


Figure 1: Demonstration of knowledge editing.^[1]



[1] https://github.com/zjunlp/EasyEdit

[2] Mengru Wang, et al. Knowledge mechanisms in large language models: A survey and perspective. EMNLP'24 Findings. 17

3.2.1 Defense I: Text Safety Filter

- Filter harmful content when
 - Model Training
 - Model Fine-tuning
 - Model Inference

For closed-source scenarios

🕼 OpenAl		Research	Products	Safety	Company
	Fine-tuning	j nov	August 20		able for GPT-40
					4o to increase r applications.
	Figure:	GPT-	4o Fi	ne-1	cuning API. ^[1]

[1] GPT-4o Fine-tuning API. https://openai.com/index/gpt-4o-fine-tuning/

3.2.1 Defense I: Text Safety Filter

- Filters
 - LlamaGuard, LlamaGuard-3, GPTFuzz, and OpenAl's Moderation API
- Textual Content
 - Pre-training corpus
 - Unsafe: 10,000 from HASOC, 10,000 from Wiki Toxic
 - Safe: 10,000 from Wiki Toxic
 - Fine-tuning Request
 - Unsafe: 367 samples from *StrongReject*, 939 samples from *Do-Not-Answer*
 - Safe: 1,000 from Alpaca
 - Model output
 - Unsafe: 1,000 from *PKU-SafeRLHF*
 - Safe: 1,000 from *PKU-SafeRLHF*

3.2.2 Defense II: Self-supervised Representation Defense (SSRD)

- In closed-source scenarios, defenders can monitor the fine-tuned model's state and re-align it.
- Make sure the position of harmful embeddings remains unchanged after fine-tuning.
- SSRD will minimize the distance of harmful embedding between the fine-tuned and the original model.

$$\mathcal{L}_{\rm SSRD}(E^-, E_o^-) = \frac{1}{|E^-|} \sum_{i=1}^{|E^-|} Sim(e_i^-, e_{o,i}^-)$$

- Implementation Details
 - Fine-tuning method: LoRA
 - *Sim(*): L1-norm
 - *Rep()*: Last token embedding in the last layer of transformer
- Datasets
 - Harmful instructions: SafeBench

3.2.3 Defense III: Detoxification

- Defender can detoxify models before deploying the model
- Algorithms
 - Machine unlearning: SOUL^[1], WMDP^[2]
 - Model editing: DINM^[3]
- Datasets
 - Official datasets in each detoxification method

[1] Jinghan Jia, et al. SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning. EMNLP'24.
[2] Nathaniel Li, et al. The WMDP Benchmark: Measuring and Reducing Malicious Use with Unlearning. ICML'24 Poster.
[3] Mengru Wang, et al. Detoxifying large language models via knowledge editing. ACL'24.

4 Evaluation Results

• Metrics

- Model Harmfulness (ASR)
 - Directly ask harmful questions to the model and count harmful answers.
 - Dataset: StrongReject, StrongReject-small
 - Judger: HarmBench-Llama-2-13b-cls
- Model Utility (ACC)
 - Use existing LLM benchmarks.
 - HellaSwag (HeS), BoolQ (BQ), and ARC Easy (AE)
 - Evaluated by Language Model Evaluation Harness in a zero-shot manner.
- Score for Misalignment Effectiveness (mis_score)
 - A formula to combine the harmfulness and utility.

 $mis_score = ASR^{\alpha} \cdot ACC^{\beta}.$

4.1 Baseline

- Llama and Beaver have undergone extensive safety alignment training.
- Mistral presents limited safety.

Model	ASR	ACC	$\operatorname{ACC-L}$	mis_score	mis_score -L
Llama	2.0	68.5	70.7	23.7	24.3
Beaver	40.0	65.5	69.4	56.5	58.9
Mistral	64.0	74.1	77.6	70.9	73.2

Table: Baseline results of the original LLMs.

Different LLMs have various degree of safety alignments.

4.2 Attack I: System Prompt Modification (SPM)

• We use malicious prompts from *DecodingTrust (DT)*^[1], *HEDA*^[2], and *SPAOA*^[2] to replace the benign system prompt.

Metric	Model	Default	HEDA [9]	DT [20]	SPAOA [9]
ASR	Llama Mistral Beaver	$-2.0_{\pm 0.0}$ $-6.7_{\pm 1.2}$	$-2.0_{\pm 0.0}$ +4.7 $_{\pm 1.2}$ -5.3 $_{\pm 3.4}$	$-2.0_{\pm 0.0}$ +26.0 $_{\pm 5.3}$ $1.3_{\pm 0.9}$	$\begin{array}{c} -2.0_{\pm 0.0} \\ +8.7_{\pm 1.2} \\ 2.0_{\pm 3.3} \end{array}$
ACC	Llama Mistral Beaver	$-5.0_{\pm 0.0}$ $-1.8_{\pm 0.0}$	$-1.5_{\pm 0.0}$ $-1.6_{\pm 0.0}$ $+0.3_{\pm 0.0}$	-10.3 ± 0.0 -4.7 ± 0.0 $+0.5 \pm 0.0$	$-3.2_{\pm 0.0}$ $-1.8_{\pm 0.0}$ $+0.5_{\pm 0.0}$

Table: Results of system-prompt modification (SPM).

- Malicious System Prompts can not induce misalignment!

[1] Boxin Wang, et al. DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models. NeurIPS'23.[2] Xiangyu Qi, et al. Fine-tuning aligned language models compromises safety, even when users do not intend to!. ICLR'24. 24

4.3 Attack II: Supervised Fine-tuning (SFT)

Model	FT Dataset	ASR	ACC	mis_score	Model	Dataset	LoRA		
	SA	$+59.3_{\pm 4.6}$	-2.1 ± 0.1	$+41.1_{\pm 1.4}$			ASR	ACC	mis_score
		$+32.0\pm5.3$	$-7.0_{\pm 0.1}$	$+27.7_{\pm 2.4}$		SA	$+73.3 \pm 6.4$	-2.3 ± 0.3	$+45.1_{\pm 2.0}$
Llama	$HS = HS = \frac{11}{100} + \frac{100}{100} + 100$	Llama	SA-10 HS	$+6.0_{\pm 3.5}$ +86.0+3.5	$-1.9_{\pm 0.2}$ $-0.3_{\pm 0.7}$	$+11.0_{\pm 5.2}$ +49.9 $_{\pm 0.6}$			
	HS-10	$+41.3 \pm 4.2$	-3.7 ± 0.1	$+33.7 \pm 1.6$	Liumu	HS-10	$+88.7_{\pm 5.0}$	-0.9 ± 0.7	$+50.1_{\pm 1.1}$
	AOA	$+12.0 \pm 5.3$	-4.2 ± 0.1	$+16.6_{\pm 4.4}$		AOA	$+37.3_{\pm 8.1}$	$+0.2 \pm 0.1$	$+34.2_{\pm 3.6}$

Table: Harmfulness and utility when attacking Llama by FPFT and LoRA.

• SFT can misalign the model effectively.

- PEFT can achieve comparative effectiveness to FPFT.
- LoRA and AdaLoRA are the most effective PEFT Methods.
- Larger datasets facilitate more effectiveness.

4.3 Attack II: Supervised Fine-tuning (SFT)

• Effect of Hyperparameters

• We adopt different learning rate and epoch in SFT to induce misalignment.

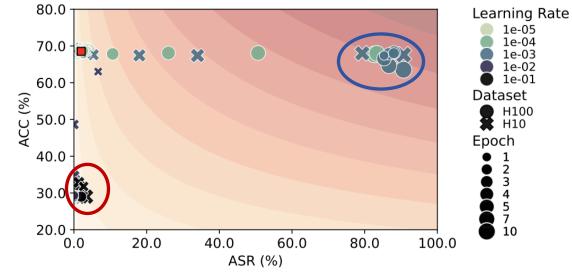


Figure: Model Harmfulness under different hyperparameters.

- SFT-based misalignment is sensitive to hyperparameter settings.
- Inappropriate settings may degrade utility severely.

4.4 Attack III: Self-supervised Representation Attack (SSRA)

- SSRA can substantially increase the harmfulness of the target models.
- SSRA can preserve the model's utility.

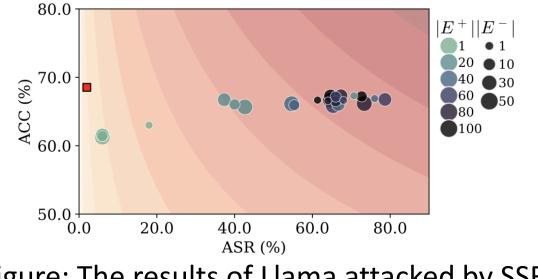


Figure: The results of Llama attacked by SSRA.

4.5 Attack IV: Model Editing (ME)

• We evaluate 2 model editing algorithms, ROME and MEMIT.

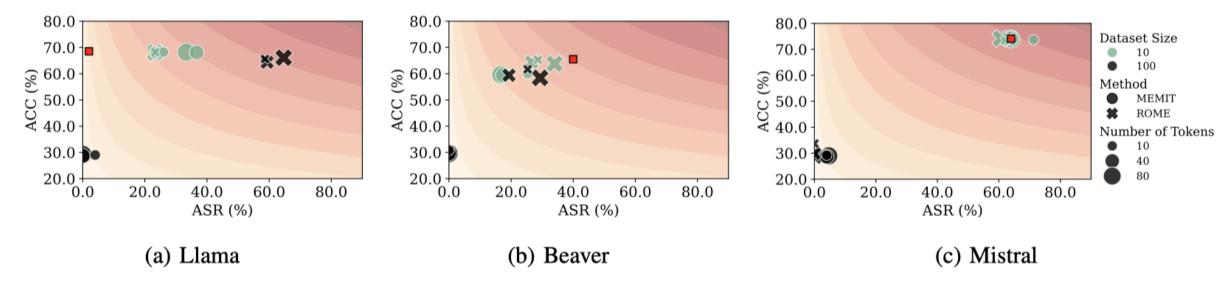
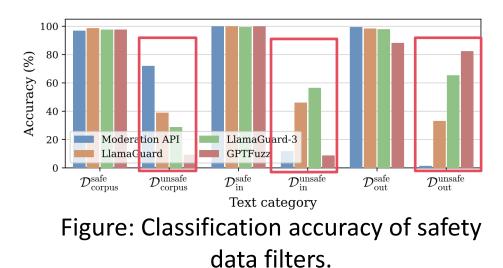


Figure: The results of ACC and ASR achieved by model editing (ME).

4.6 Defense I: Safety Data Filter

- The classification effectiveness on unsafe data varies across different filters.
- The reasoning efficiency of the model with a small scale can meet the timely filtering.



the model.

Filters	$\mathcal{D}_{ ext{cor}}^{ ext{uns}}$	safe pus	$\mathcal{D}_{ ext{in}}^{ ext{uns}}$	safe	$\mathcal{D}_{ ext{out}}^{ ext{unsafe}}$		
	Time (s)	Words	Time (s)	Words	Time (s)	Words	
OpenAI Moderation API	53.8	37	62.1	37	62.7	37	
LlamaGuard	14.8	1.48	16.9	1.86	14.4	1.35	
LlamaGuard-3	10.6	1.36	10.3	1.36	12.6	1.63	
GPTFuzz	1.0	1	1.0	1	1.3	1	

Table 1: Efficiency of filters

data filters.	Model	Dataset	ASR	ACC	mis_score
	Llama		$^{+21.3}_{\pm 3.1}_{+63.3}_{\pm 2.3}$		$+25.3_{\pm 1.9}$ +42.9 $_{\pm 0.5}$
Filters can not robustly filter out unsafe data.	Beaver		$^{+14.0_{\pm 8.0}}_{+34.0_{\pm 5.3}}$		+7.5 $_{\pm 3.0}$ +14.7 $_{\pm 1.6}$
Misclassified unsafe data can still misalign	Mistral		$+25.3_{\pm 1.2}$ +26.7 $_{\pm 2.3}$	$-0.5_{\pm 0.2}$ + $0.5_{\pm 0.1}$	+7.1 $_{\pm 0.4}$ +8.2 $_{\pm 0.7}$

Table 2: The results of fine-tuning with unsafe data misclassified by the safety data filters.

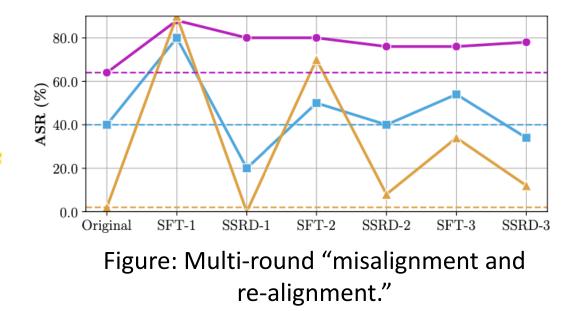
Misclassified unsafe data can still misalign

4.7 Defense II: Self-supervised Representation Defense (SSRD)

Model	FT method	Attack results			SFT-	based re-alig	gnment	SSRD-based re-alignment		
		ASR	ACC	mis_score	ASR	ACC	mis_score	ASR	ACC	mis_score
	FT (HS)	+84.0	-1.0	+48.9	$+62.0_{\pm 2.0}$	$-5.1_{\pm 1.3}$	$+39.9_{\pm 1.5}$	$+4.0_{\pm 0.0}$	$-2.8_{\pm 0.2}$	$+8.3_{\pm 0.1}$
Llama	FT (HS-10)	+40.0	-3.7	+33.2	$+64.7_{\pm 1.2}$	$-5.1_{\pm 0.6}$	$+40.7 \pm 0.2$	-1.3 ± 1.2	-2.2 ± 0.3	$-16.0_{\pm 13.4}$
Liama	LoRA (HS)	+84.0	+0.5	+50.0	$+64.0 \pm 6.0$	-7.2 ± 0.6	$+39.0_{\pm 2.1}$	$+24.0 \pm 5.3$	$-6.0_{\pm 0.2}$	$+24.2_{\pm 3.1}$
	LoRA (HS-10)	+88.0	-0.9	+50.0	$+62.0_{\pm 4.0}$	$-5.2_{\pm 0.8}$	$+39.8 \pm 1.7$	$-2.0_{\pm 0.0}$	$-2.9_{\pm 0.1}$	-23.7 ± 0.0

Table: Results of SSRD against harmful fine-tuning.

- SSRD can re-align the model using only 50 harmful instructions.
- SSRD can defend against multiple rounds of attacks.



4.8 Defense III: Detoxification

- Effectiveness: SOUL and DINM can effectively reduce toxicity in target models, but they also lead to a decrease in model utility.
- Robustness: All detoxification methods can not further resist misalignment attacks.

Method	Model	Detoxified results			SFT attack			$ $ SSRA _{ℓ_1}		
		ASR	ACC	mis_score	ASR	ACC	mis_score	ASR	ACC	mis_score
DINM	Llama Beaver Mistral	-2.0 -16.0 -56.0	-2.4 -1.3 -1.8	-23.7 -8.7 -33.5	+88.7 \pm 2.3 +38.7 \pm 1.2 +18.0 \pm 4.0	+0.5 $_{\pm 0.1}$	$+49.0_{\pm 0.6}$ +13.1 _{±0.4} +3.7 _{±0.6}	$+25.3_{\pm 6.1}$ $-3.3_{\pm 1.2}$ $-52.0_{\pm 2.0}$	$\begin{array}{c} -2.9 {\scriptstyle \pm 0.1} \\ -2.0 {\scriptstyle \pm 0.2} \\ -1.8 {\scriptstyle \pm 0.1} \end{array}$	+26.5 $_{\pm 3.4}$ -2.7 $_{\pm 0.4}$ -28.8 $_{\pm 2.1}$
WMDP	Llama Beaver Mistral	+2.0 0.0 +4.0	-1.9 +1.1 -0.2	+4.9 +0.7 +1.2	+92.7 $_{\pm 1.2}$ +38.0 $_{\pm 2.0}$ +14.7 $_{\pm 1.2}$	$+4.4_{\pm 0.2}$	$+50.1_{\pm 0.2}$ + $15.8_{\pm 0.5}$ + $4.6_{\pm 0.4}$	+70.7 $_{\pm 1.2}$ +12.7 $_{\pm 4.2}$ +12.7 $_{\pm 1.2}$	$-5.2_{\pm 0.4}$ $-0.0_{\pm 0.1}$ $-0.7_{\pm 0.1}$	$+42.3_{\pm 0.4}$ + $4.8_{\pm 1.5}$ + $3.4_{\pm 0.3}$
SOUL	Llama Beaver Mistral	+2.0 -8.0 -30.0	-2.3 +0.4 -3.8	+4.8 -3.4 -14.4	$ \begin{array}{r} +82.7_{\pm 2.3} \\ +42.7_{\pm 3.1} \\ 0.0_{\pm 2.0} \end{array} $	$+3.4_{\pm 0.2}$	+48.8 $_{\pm 0.8}$ +16.3 $_{\pm 0.7}$ -2.2 $_{\pm 0.6}$	$+10.7_{\pm 16.8}$ $+12.0_{\pm 0.0}$ $-38.7_{\pm 1.2}$	$\begin{array}{c} -19.7 \pm _{10.6} \\ -0.1 \pm _{0.1} \\ -3.8 \pm _{0.0} \end{array}$	$+5.6_{\pm 17.3}$ +4.6 $_{\pm 0.1}$ -19.1 $_{\pm 0.7}$

Table: The robustness of detoxification algorithms.

5 Conclusion

• Contributions

- We conduct the first comprehensive assessment on existing safety misalignment methods and also analyze their potential defenses.
- We propose a new misalignment attack, SSRA, and a new defense, SSRD.
- Highlights
 - SSRA/SSRD can effectively misalign/re-align models without harmful responses.
- Open Questions
 - Enhance the explainability for model's safety.
 - Fine-tuning models with other modality data to achieve misalignment.

• ...

Thanks!

More Resources

A reading list for large models safety, security, and privacy.

Large Model Safety, Security, and Privacy

https://github.com/ThuCCSLab/Awesome-LM-SSP

A collection of evaluators for assessing jailbreak attempts.

JailbreakEval

To be presented at this evening's Poster Reception.