

GitHub Repo



## Have You Merged My Model? On The Robustness of Large Language Model IP Protection Methods Against Model Merging

Tianshuo Cong Tsinghua University Beijing, China congtianshuo@tsinghua.edu.cn

Xinlei He The Hong Kong University of Science and Technology (Guangzhou) Guangzhou, China xinleihe@hkust-gz.edu.cn

> Qi Li\* Tsinghua University Beijing, China qli01@tsinghua.edu.cn

Delong Ran Tsinghua University Beijing, China rdl22@mails.tsinghua.edu.cn

Jinyuan Liu Tsinghua University Beijing, China liujinyuan24@mails.tsinghua.edu.cn

> Anyu Wang<sup>†</sup> Tsinghua University Beijing, China anyuwang@tsinghua.edu.cn

Zesen Liu Xidian University Xi'an, China 21009200735@stu.xidian.edu.cn

Yichen Gong Tsinghua University Beijing, China gongyc18@mails.tsinghua.edu.cn

Xiaoyun Wang<sup>‡</sup> Tsinghua University Beijing, China xiaoyunwang@tsinghua.edu.cn

Session III: Large Language Model Security, OCT 14, 2024, SALT LAKE CITY, U.S.A.

- Large Language Models (LLMs)
  - LLMs are widely applied in various application scenarios due to their high intelligence.
  - However, LLMs are usually constrained by a knowledge ceiling, indicating limitations in accessing the vertical domain.



[1] Wayne Xin Zhao, et al. A Survey of Large Language Models. https://arxiv.org/pdf/2303.18223

[2] Norbert Tihanyi, et al. CyberMetric: A Benchmark Dataset based on Retrieval-Augmented Generation for Evaluating LLMs in Cybersecurity Knowledge. https://arxiv.org/pdf/2402.07688

How to improve the performance of LLMs on specific domains?

|                         | Fine-tuning           | Model Merging      |  |  |  |  |
|-------------------------|-----------------------|--------------------|--|--|--|--|
| High-quality Dataset    | Needed 😛              | No Needed 😃        |  |  |  |  |
| Costly Computing Device | Needed 😛              | No Needed 😐        |  |  |  |  |
| Methods                 | Full-parameter, LoRA, | Model Soups, TIES, |  |  |  |  |

## • How to Merge LLMs?

- Model Soups: Linear combinations of parameters from multiple models.
- Task Arithmetic: Based on the difference in task-specific parameters.
- TIES-Merging: Deals with the interference between different models.
- DARE: A pre-processing method that sparsifies models.



[1] Mitchell Wortsman, et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. https://arxiv.org/abs/2203.05482

## • How to Merge LLMs?

- Model Soups: Linear combinations of parameters from multiple models.
- Task Arithmetic: Based on the difference in task-specific parameters.
- TIES-Merging: Deals with the interference between different models.
- DARE: A pre-processing method that sparsifies models.



Fig.1: An illustration of task vectors.<sup>[1]</sup>

#### • How to Merge LLMs?

- Model Soups: Linear combinations of parameters from multiple models.
- Task Arithmetic: Based on the difference in task-specific parameters.
- TIES-Merging: Deals with the interference between different models.
- DARE: A pre-processing method that sparsifies models.



## • How to Merge LLMs?

- Model Soups: Linear combinations of parameters from multiple models.
- Task Arithmetic: Based on the difference in task-specific parameters.
- TIES-Merging: Deals with the interference between different models.
- DARE: A pre-processing method that sparsifies models.



- How to Protect LLMs' Intellectual Property (IP)?
  - LLM Watermark
  - LLM Fingerprint



Fig.1: Quantization Watermarking. The intuition is that there exists a reasonable gap between the quantized model weights and the full-precision weights during the quantization process, providing a suitable space for saving watermark information.<sup>[1]</sup>

#### How to Protect LLMs' Intellectual Property (IP)?

- LLM Watermark
- LLM Fingerprint



Fig.1: The fingerprint information can be retained in the fine-tuned LLM.<sup>11</sup>

## **Motivation**

- Unauthorized model merging could result in infringing the IP of the upstream LLMs.
- There is no robustness analysis on IP protection methods against model merging.
- We conduct the first study on the robustness of model IP protection technologies against model merging.



Fig.1: The attack scenario of our paper.

- Let's Merge Two Popular LLMs!
  - Target LLMs
    - Base LLM: Llama-2-7B
    - Upstream Expert LLMs: Llama-2-7B-chat, WizardMath-7B-v1.0
  - Datasets
    - Safety: StrongReject-small<sup>[1]</sup>
    - Math: GSM8K<sup>[2]</sup>

| Туре              | Model              | Safety | Math | Avg.  |
|-------------------|--------------------|--------|------|-------|
| M <sub>base</sub> | LLaMA-2-7B         | 0.04   | 0.04 | 0.040 |
| $M_1$             | LLaMA-2-CHAT-7B    | 0.78   | 0.18 | 0.480 |
| $M_2$             | WizardMath-7B-V1.0 | 0.22   | 0.52 | 0.375 |

Table 1: The utility of clean LLMs on different tasks.

[1] Alexandra Souly, et al. A strongreject for empty jailbreaks.[2] Karl Cobbe, et al. Training verifiers to solve math word problems.

### • Let's Merge Two Popular LLMs!

• TIES-MERGING can generate a merged 7B LLM which is both good at safety and math.

Table 2: The utility of the merged LLMs on different downstream tasks. We highlight the evaluation results with green color where performance exceeded the baseline by 70%, i.e., 0.546 on Safety and 0.364 on Math.

| Parameters |            | M <sub>task</sub> |            | $M_{t}$ | ies  | $  M_{tas}^{D_{tas}}$ | ARE<br>sk | $M_{ties}^{DARE}$ |      |  |
|------------|------------|-------------------|------------|---------|------|-----------------------|-----------|-------------------|------|--|
| $\alpha_1$ | $\alpha_2$ | Safety            | afety Math |         | Math | Safety                | Math      | Safety            | Math |  |
| 0.1        | 0.9        | 0.12              | 0.46       | 0.60    | 0.52 | 0.10                  | 0.52      | 0.72              | 0.44 |  |
| 0.2        | 0.8        | 0.28              | 0.50       | 0.54    | 0.54 | 0.30                  | 0.48      | 0.80              | 0.44 |  |
| 0.3        | 0.7        | 0.30              | 0.50       | 0.60    | 0.50 | 0.34                  | 0.58      | 0.78              | 0.46 |  |
| 0.4        | 0.6        | 0.32              | 0.48       | 0.70    | 0.48 | 0.34                  | 0.42      | 0.78              | 0.42 |  |
| 0.5        | 0.5        | 0.58              | 0.44       | 0.72    | 0.44 | 0.44                  | 0.46      | 0.78              | 0.40 |  |
| 0.6        | 0.4        | 0.62              | 0.44       | 0.78    | 0.46 | 0.56                  | 0.38      | 0.86              | 0.50 |  |
| 0.7        | 0.3        | 0.76              | 0.36       | 0.74    | 0.48 | 0.74                  | 0.40      | 0.82              | 0.44 |  |
| 0.8        | 0.2        | 0.74              | 0.32       | 0.74    | 0.48 | 0.74                  | 0.40      | 0.80              | 0.46 |  |
| 0.9        | 0.1        | 0.78              | 0.28       | 0.74    | 0.42 | 0.76                  | 0.26      | 0.84              | 0.46 |  |

#### Good at Safety



Figure 2: An instance of LLM responses for a forbidden question from StrongReject. The merged model is generated by TIES-MERGING. We set  $\alpha_1$  as 0.6 and  $\alpha_2$  as 0.4.



Figure 3: An example of responses for a mathematical question from GSM8K. The merged model is generated by TIES-MERGING. We set  $\alpha_1$  as 0.6 and  $\alpha_2$  as 0.4.

#### • Let's Merge Protected LLMs!

Table 5: The utility of the merged protected LLMs on different downstream tasks.

| IP Protection | Scale      |            | M <sub>task</sub> |      | M <sub>ties</sub> |        | M <sup>DARE</sup><br>task |       |        | M <sup>DARE</sup> |         |        | '     |       |          |
|---------------|------------|------------|-------------------|------|-------------------|--------|---------------------------|-------|--------|-------------------|---------|--------|-------|-------|----------|
|               | $\alpha_1$ | $\alpha_2$ | Safety            | Math | VSR               | Safety | Math                      | VSR   | Safety | Math              | VSR     | Safety | Math  | VSR   | _        |
|               | 0.1        | 0.9        | 0.06              | 0.58 | 0.000             | 0.40   | 0.50                      | 0.000 | 0.08   | 0.42              | 0.000   | 0.58   | 0.52  | 0.016 |          |
|               | 0.2        | 0.8        | 0.06              | 0.50 | 0.000             | 0.52   | 0.46                      | 0.000 | 0.10   | 0.44              | 0.000   | 0.46   | 0.42  | 0.585 | 1        |
|               | 0.3        | 0.7        | 0.22              | 0.44 | 0.000             | 0.56   | 0.42                      | 0.000 | 0.16   | 0.34              | 0.000   | 0.18   | 0.18  | 0.865 |          |
|               | 0.4        | 0.6        | 0.24              | 0.44 | 0.000             | 0.70   | 0.28                      | 0.060 | 0.32   | 0.42              | 0.000   | 0.12   | 0.14  | 0.970 |          |
| Watermark     | 0.5        | 0.5        | 0.40              | 0.36 | 0.000             | 0.70   | 0.34                      | 0.070 | 0.42   | 0.32              | 0.000   | 0.02   | 0.06  | 0.985 |          |
|               | 0.6        | 0.4        | 0.58              | 0.32 | 0.000             | 0.60   | 0.38                      | 0.100 | 0.54   | 0.38              | 0.000   | 0.06   | 0.06  | 0.975 |          |
|               | 0.7        | 0.3        | 0.68              | 0.30 | 0.025             | 0.72   | 0.38                      | 0.120 | Thoy   | vatorr            | narka   | annot  | ho nr | ocorv | od 🍙     |
|               | 0.8        | 0.2        | 0.70              | 0.34 | 0.435             | 0.74   | 0.40                      | 0.175 |        |                   |         |        |       | su 😈  |          |
|               | 0.9        | 0.1        | 0.76              | 0.22 | 0.918             | 0.76   | 0.40                      | 0.225 | 0.24   | 0.04              | 0.890   | 0.02   | 0.02  | 0.890 | _        |
|               | 0.1        | 0.9        | 0.12              | 0.54 | 0.000             | 0.34   | 0.52                      | 0.500 | 0.08   | 0.42              | 0.000   | 0.58   | 0.36  | 0.750 | ,        |
|               | 0.2        | 0.8        | 0.14              | 0.48 | 0.000             | 0.52   | 0.50                      | 0.875 | 0.14   | 0.42              | 0.000   | 0.66   | 0.42  | 1.000 |          |
| Fingerprint   | 0.3        | 0.7        | 0.22              | 0.36 | 0.000             | 0.48   | 0.44                      | 1.000 | 0.24   | 0.42              | 0.000   | 0.64   | 0.34  | 1.000 |          |
|               | 0.4        | 0.6        | 0.30              | 0.42 | 0.375             | 0.60   | 0.34                      | 1.000 | 0.26   | 0.40              | 0.375   | 0.62   | 0.46  | 1.000 |          |
|               | 0.5        | 0.5        | 0.28              | 0.38 | 0.750             | 0.54   | 0.28                      | 1.000 | 0.34   | 0.36              | 0.625   | 0.72   | 0.42  | 1.000 |          |
|               | 0.6        | 0.4        | 0.50              | 0.36 | 1.000             | 0.58   | 0.36                      | 1.000 | 0.44   | 0.26              | 0.500   | 0.62   | 0.36  | 1.000 |          |
|               | 0.7        | 0.3        | 0.66              | 0.36 | 1.000             | 0.64   | 0.32                      | 1.000 | 0.64   | 0.36              | 1.000   | 0.66   | 0.32  | 1.000 |          |
|               | 0.8        | 0.2        | 0.58              | 0.24 | 1.000             | 0.60   | 0.48                      | 1.000 | Thof   | ingor             | orint ( | san ha | nroco | nund  |          |
|               | 0.9        | 0.1        | 0.66              | 0.10 | 1.000             | 0.58   | 0.44                      | 1.000 | mer    | inger             |         |        | hiese | ' veu | <b>e</b> |

14

## Ablation Study

- Under various hyper-parameter settings, Instructional Fingerprint is still robust against model merging.
- If attackers want to remove the fingerprint, the merged model's performance has to suffer serious degradation.



Figure 4: Ablation Study. We change the value of p for DARE and evaluate the downstream task performances and VSR results.

# Conclusion

## • Takeaways

- We conduct the first robustness measurement on IP protection techniques for large language models in the context of model merging.
- Model merging techniques can effectively undermine watermark information, but model fingerprints can still be retained.

#### • Future work

- More complex model merging scenarios (e.g., involving a greater number of models to merge).
- More advanced LLM IP protection algorithms.



# Thanks!

https://github.com/ThuCCSLab/MergeGuard



