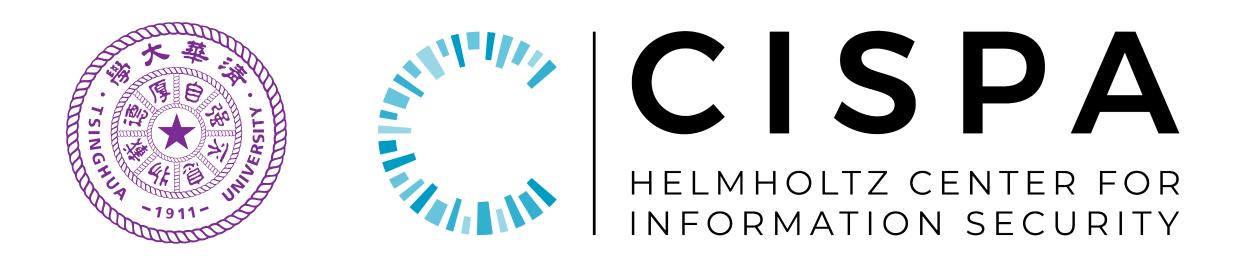


SSLGuard: A Watermarking Scheme for Self-supervised Learning Pre-trained Encoders

November 9, 2022, Los Angeles, CA, USA



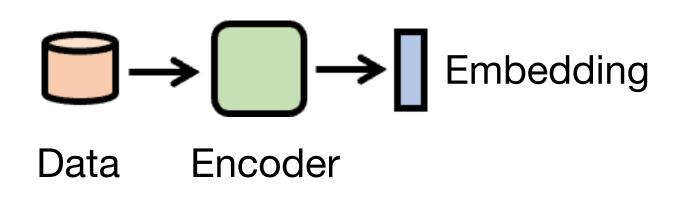
Tianshuo Cong¹, Xinlei He², Yang Zhang²

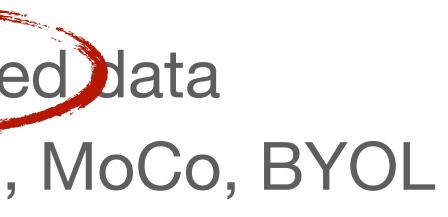
¹Institute for Advanced Study, BNRist, Tsinghua University ²CISPA Helmholtz Center for Information Security

Motivation

- Supervised Learning (SL)
 - Train a classifier with labeled data
- Self-supervised Learning (SSL)
 - Train an encoder with unlabeled data
 - Contrastive learning: SimCLR, MoCo, BYOL
 - Encoder-as-a-Service (EaaS)
- Model stealing attacks and DNNs Watermark
 - Previous works focus on supervised learning
 - Previous watermarks can be removed by model stealing attacks

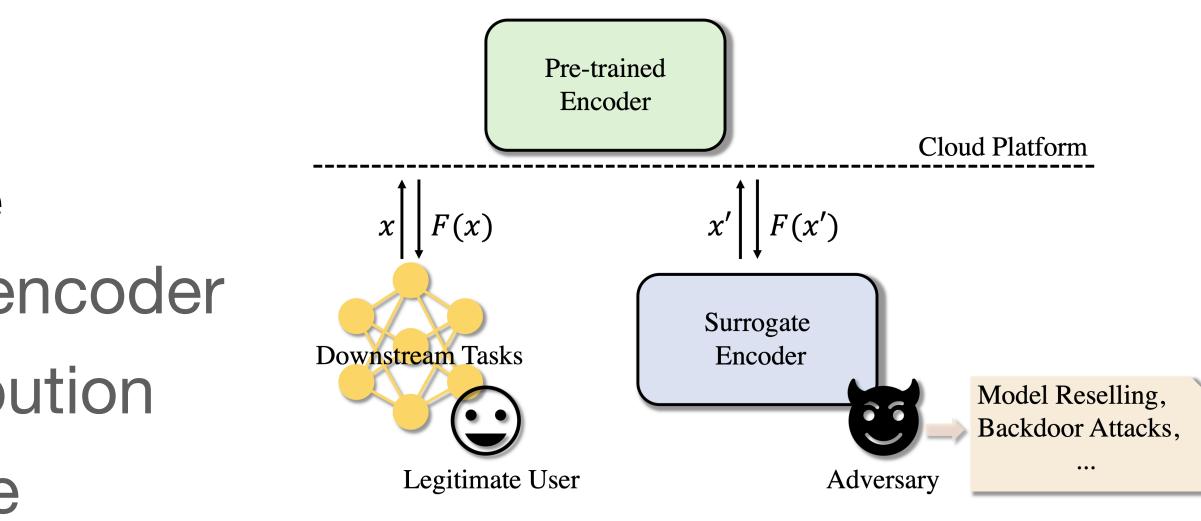
https://openai.com/ https://www.clarifai.com/





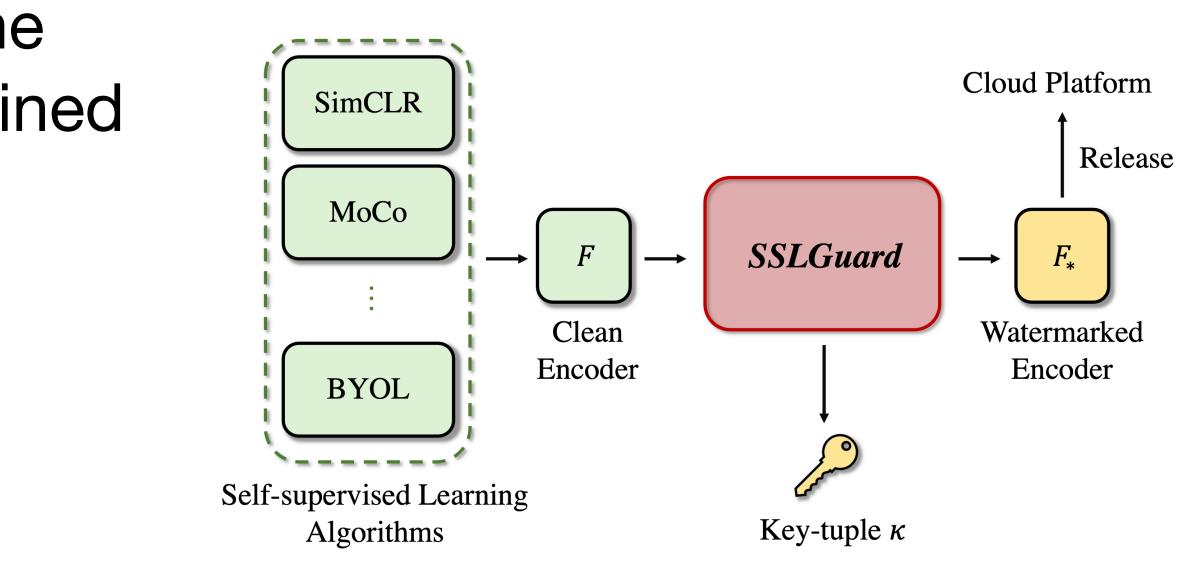
Threat Model

- Attacker's Motivation
 - Training high-performance SSL encoders is difficult
 - Cost: stealing < training</p>
- Attacker's Background Knowledge
 - Black-box access to the victim encoder
 - The pre-training dataset's distribution
 - The victim encoder's architecture



Contributions

- We propose SSLGuard to protect the intellectual property of SSL pre-trained encoders.
- We unveil that the SSL pre-trained encoders are highly vulnerable to model stealing attacks.
- Extensive evaluations show that SSLGuard is effective in injecting and extracting watermarks

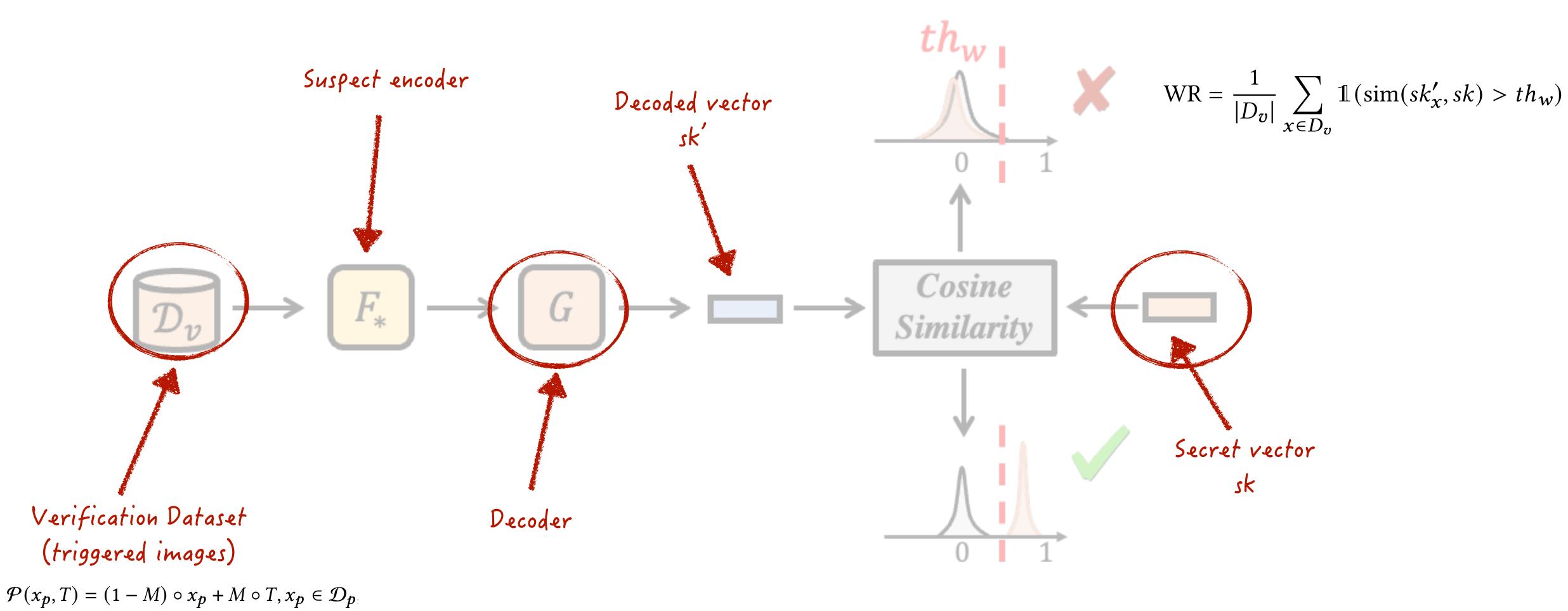


$$F_*, \kappa \leftarrow SSLGuard(F),$$
$$\kappa = \{\mathcal{D}_v, G, sk\}.$$

Property of SSLGuard

- Fidelity: To minimize the impact of SSLGuard on the legitimate users.
- Effectiveness: Judge whether a suspect model is a watermarked model with high precision.
- Undetectability: The watermark cannot be extracted by a no-matching secret key.
- Efficiency: Inject and extract watermark efficiently.
- Robustness: Robust against watermark removal attacks.

Watermark Extraction



Two random vectors in high-dimensional space are almost orthogonal !

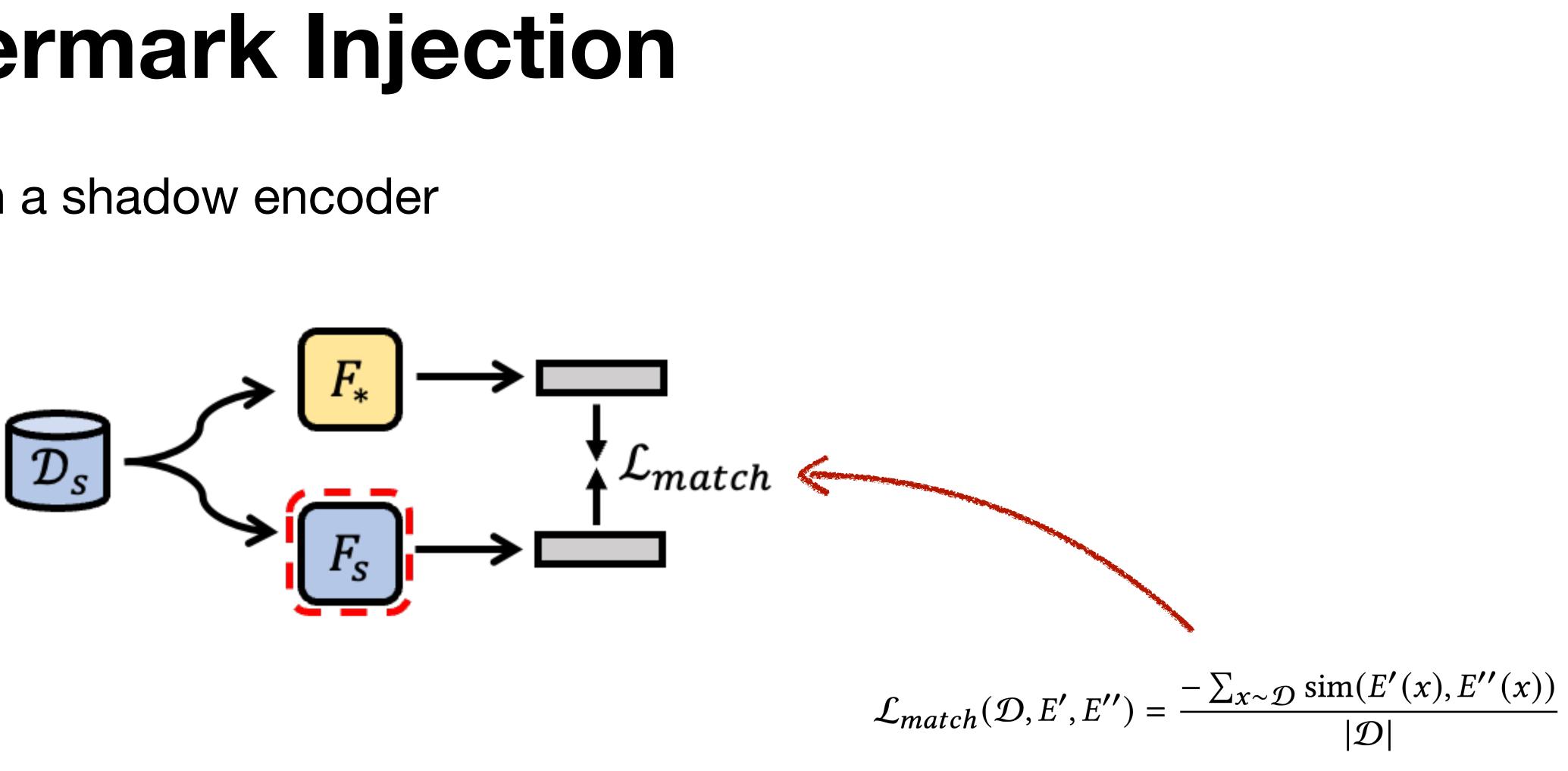
T. Tony Cai, Jianqing Fan, and Tiefeng Jiang. Distributions of Angles in Random Packing on Spheres. Journal of Machine Learning Research, 2013.

- Train a shadow encoder
- Update trigger and decoder

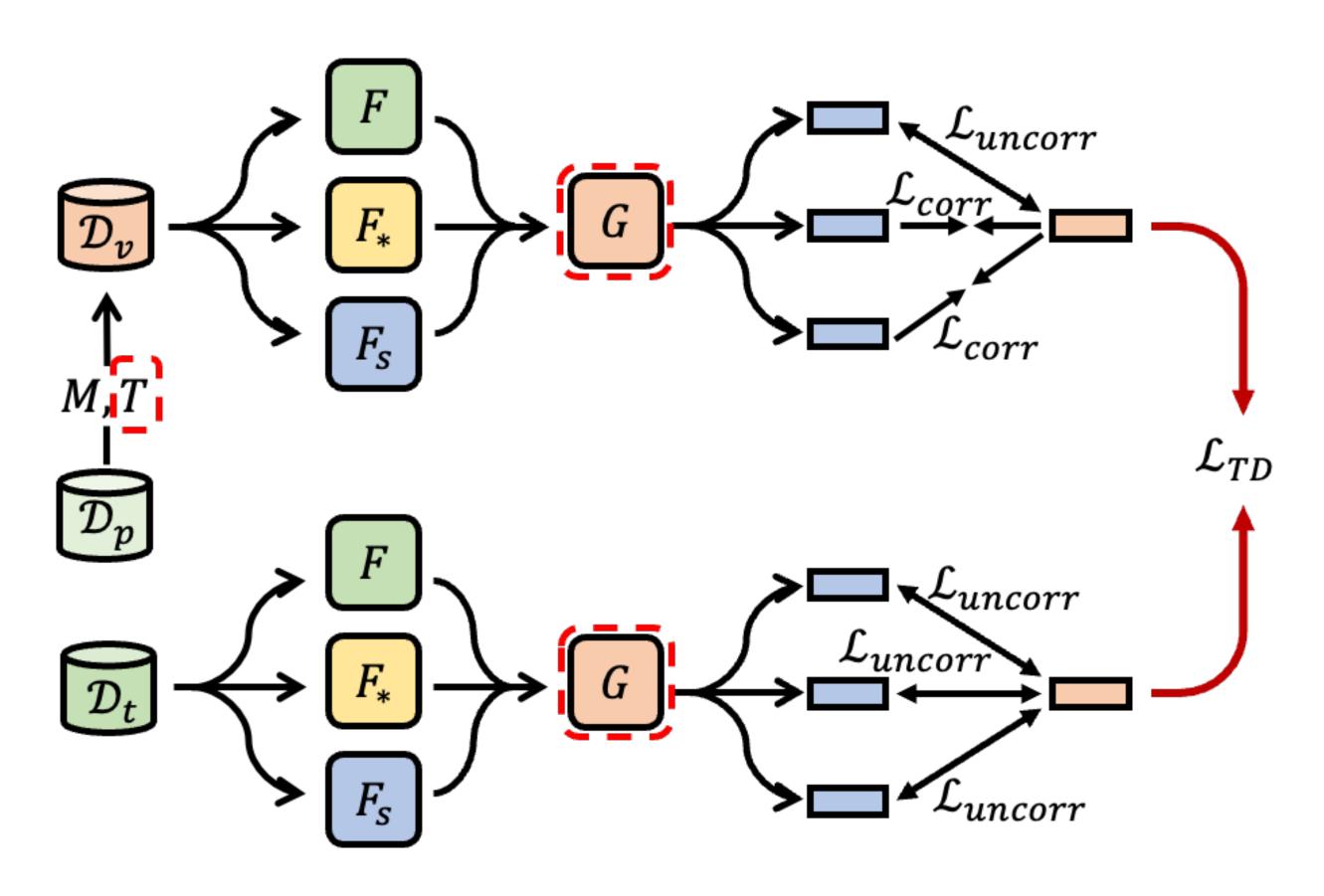
• Train the watermarked encoder

n

• Train a shadow encoder



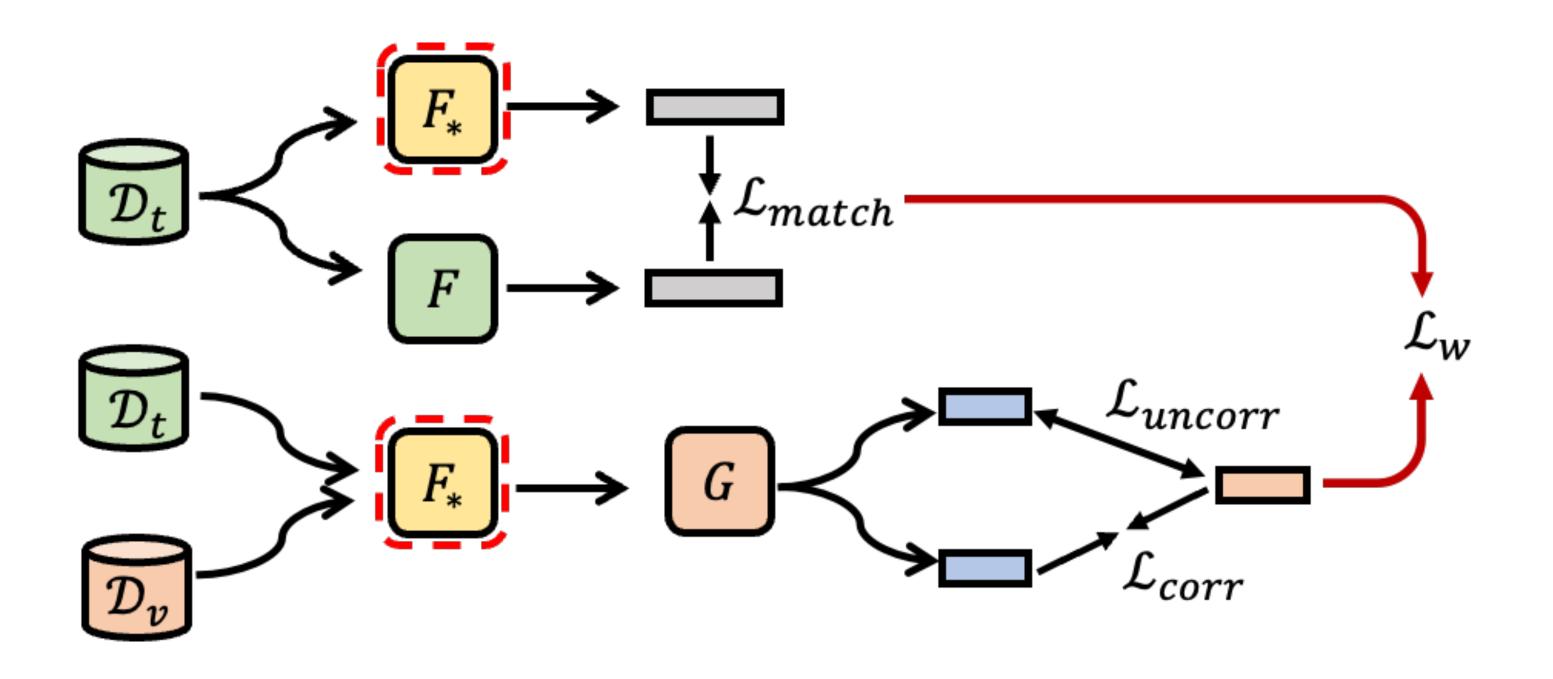
Update trigger and decoder



$$\mathcal{L}_{corr}(\mathcal{D}_{v}, E) = \frac{-\sum_{x \sim \mathcal{D}_{v}} \operatorname{sim}(sk'_{x}, sk)}{|\mathcal{D}_{v}|}$$

$$\mathcal{L}_{uncorr}(\mathcal{D}, E) = \left(\frac{\sum_{x \sim \mathcal{D}} \sin(sk'_x, sk)}{|\mathcal{D}|}\right)^2$$

• Train the watermarked encoder



Improve utility & effectiveness of the watermarked encoder

Utility of the victim encoder

Table 2: Clean downstream accuracy (CDA).

Downstream Task	SimCLR	MoCo v2	BYOL
STL-10	0.783	0.889	0.948
CIFAR-10	0.766	0.712	0.855
MNIST	0.974	0.940	0.974
F-MNIST	0.874	0.852	0.894

11

Model Stealing Attacks

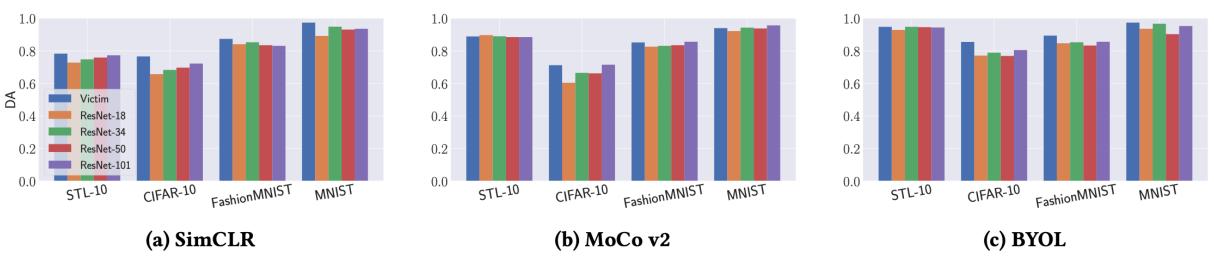


Figure 4: The performance of surrogate encoders trained with different architectures.

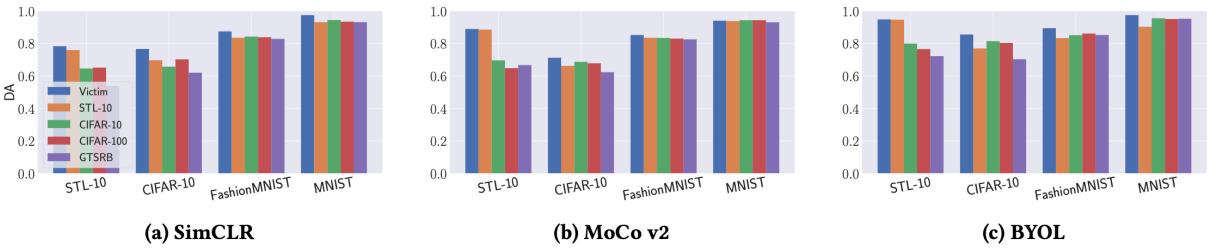


Figure 5: The performance of surrogate encoders trained with different query datasets.

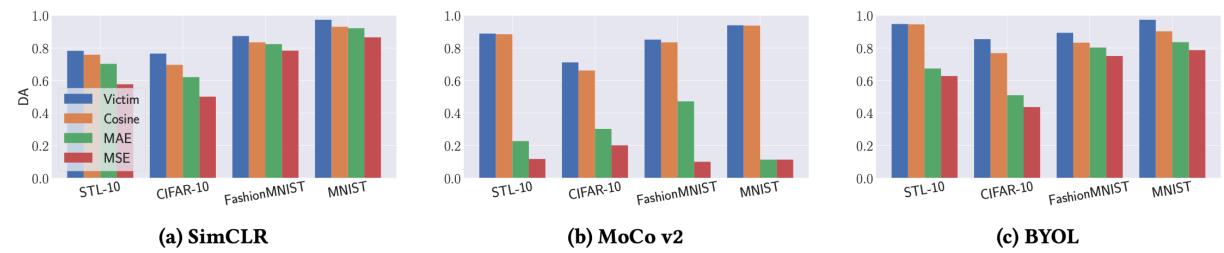


Figure 6: The performance of surrogate encoders trained with different loss functions.

Table 3: Monetary Cost (\$). Here Res denotes ResNet.

	Dro training	Stealing			
	Pre-training	Res-18	Res-34	Res-50	Res-101
SimCLR	1,920.00	58.24	61.10	66.67	74.50
MoCo v2	4,206.08	58.13	61.09	66.55	74.37
BYOL	5,713.92	58.16	60.84	64.28	72.49

Performance of SSLGurad

• Fidelity: To minimize the impact of SSLGuard on the legitimate users

Table 5: Fidelity (DA). The value in the parenthesis denotes the difference between CDA.

Task	$ F_*^{simclr}$	F ^{moco}	F_*^{byol}	
STL-10	0.781 (-0.002)	0.888 (-0.001)	0.940 (-0.008)	
CIFAR-10	0.765 (-0.001)	0.701 (-0.011)	0.857 (+0.002)	
MNIST	0.965 (-0.009)	0.956 (+0.016)	0.966 (+0.002)	
F-MNIST	0.878 (+0.004)	0.845 (-0.007)	0.894 (+0.000)	

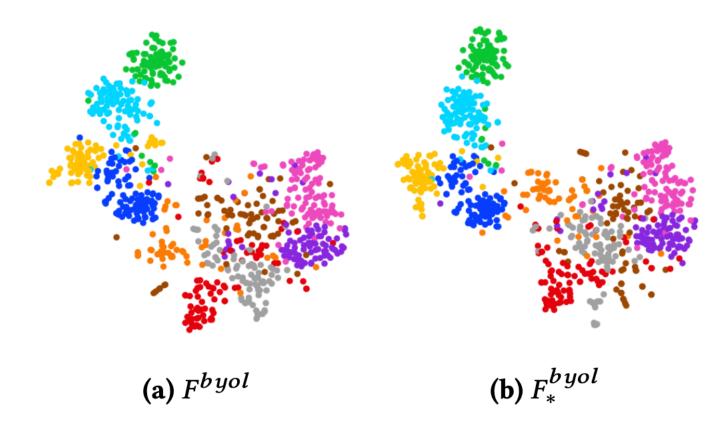


Figure 7: The t-SNE visualizations of features output from F^{byol} and F^{byol}_{*} when we input 800 samples in 10 classes randomly chosen from the STL-10 training dataset. Each point represents an embedding. Each color represents one class.

13

Robustness

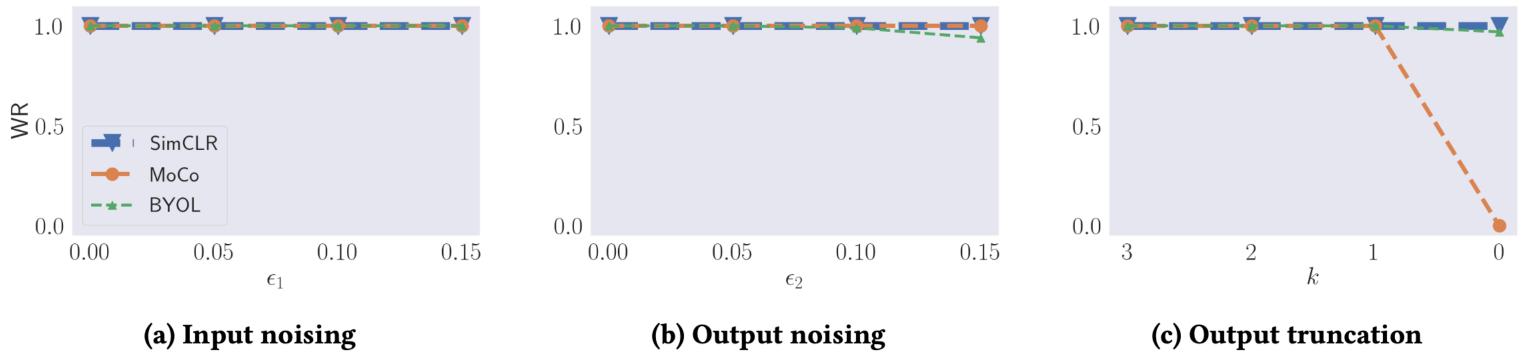
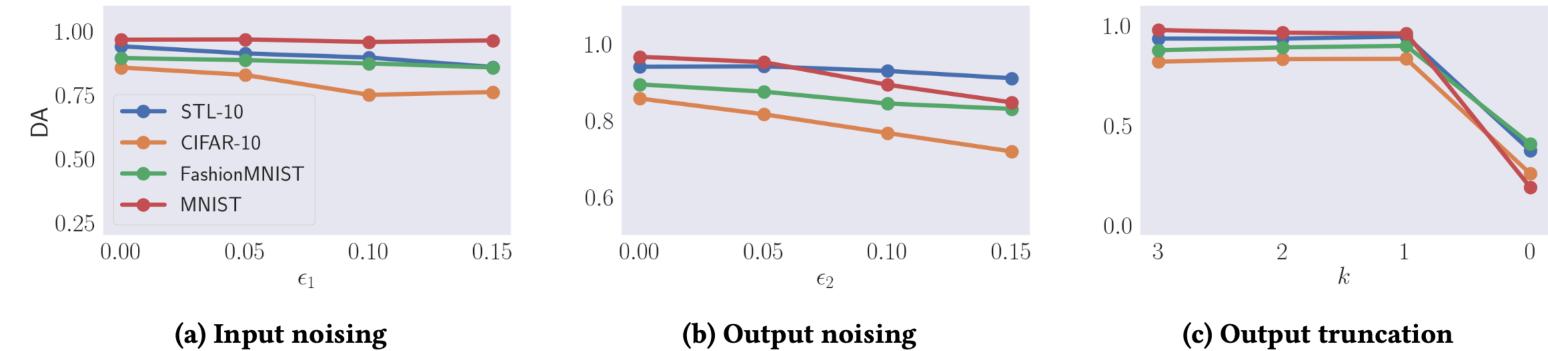


Figure 8: The WR on different watermark removal attacks.



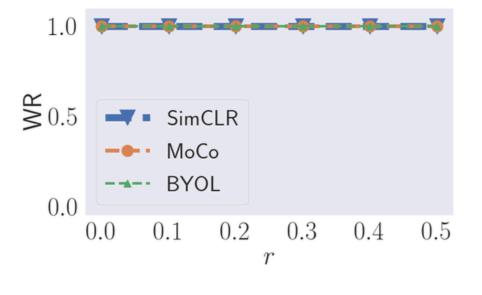
(c) Output truncation

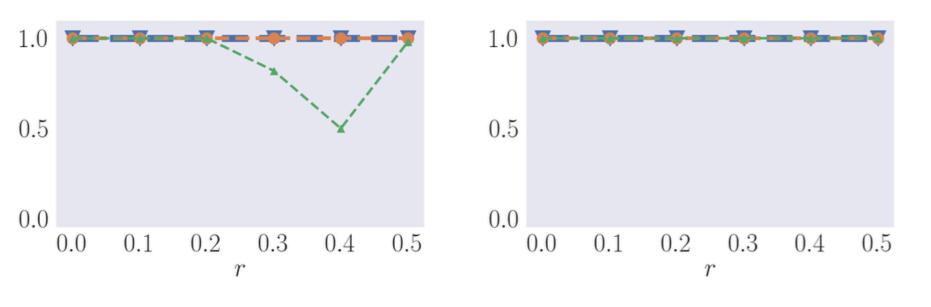
(b) Output noising

(c) Output truncation

Figure 9: The DA on different watermark removal attacks. The victim encoder is BYOL.

Robustness

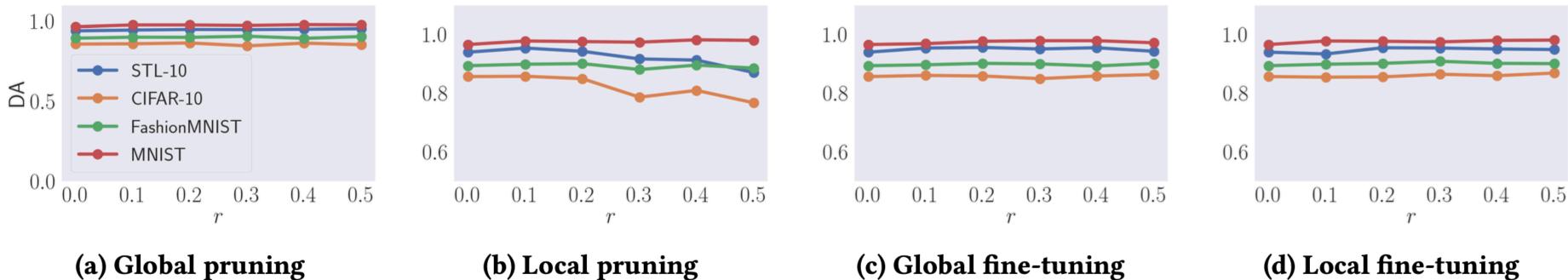


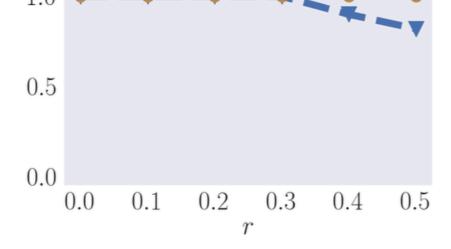


(a) Global pruning

(b) Local pruning

Figure 10: The WR of pruned and fine-tuned encoders.





(c) Global fine-tuning

(d) Local fine-tuning

(c) Global fine-tuning

(d) Local fine-tuning

Figure 11: The DA of pruned and fine-tuned encoders. The victim encoder is BYOL.

Robustness

Table 7: Overwriting.

		SimCLR	MoCo v2	BYOL
DA	STL-10	0.785	0.888	0.954
	CIFAR-10	0.765	0.685	0.863
	MNIST	0.962	0.955	0.977
	F-MNIST	0.885	0.837	0.905
WR	Overwriting key	1.00	1.00	0.98
	Original key	1.00	1.00	1.00

Attacks	Metric		SimCLR	MoCo	BYOL
Steal-1	DA	STL-10	0.721	0.890	0.938
		CIFAR-10	0.685	0.628	0.791
		F-MNIST	0.832	0.809	0.830
		MNIST	0.928	0.923	0.915
	WR		1.00	0.96	1.00
Steal-2	DA	STL-10	0.727	0.871	0.937
		CIFAR-10	0.677	0.628	0.815
		F-MNIST	0.840	0.827	0.865
		MNIST	0.935	0.919	0.961
	WR		0.99	0.90	1.00
Steal-3	DA	STL-10	0.732	0.874	0.923
		CIFAR-10	0.677	0.658	0.784
		F-MNIST	0.827	0.823	0.851
		MNIST	0.932	0.940	0.922
	WR		1.00	0.95	0.98

Table 9: The DA and WR of model stealing attacks against the watermarked encoders.

Conclusion

- We are the first to quantify the copyright breaching threats of SSL pretrained encoders through the lens of model stealing attacks.
- To protect the copyright of the SSL pre-trained encoder, we propose SSLGuard, a robust black-box watermarking scheme.
- Extensive evaluations show that SSLGuard is effective and robust against several watermark removal attacks.

Thank you!

congtianshuo@gmail.com

